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SYNTHESIS PROCEDURE FOR LINEAR TIME-VARYING
FEEDBACK SYSTEMS WITH LARGE PARAMETER IGNORANCE

Abstract--This work is addressed to the development of synthesis

procedures for linear time-varying feedback systems. It is

assumed that the plant can be described by linear differential

equations with time-varying coefficients; however, ignorance is

associated with the plant in that only the range of the time-

variations are known instead of exact functional relationships.

As a result of this plant ignorance the use of time-varying

compensation is ineffective so that only time-invariant com-

pensation is employed. In addition, there is a noise source

at the plant output which feeds noise through the feedback

elements to the plant input. Because of this noise source the

gain of the feedback elements must be as small as possible.

No attempt is made to develop a stability criterion for time-

varying systems in this work.

Two synthesis procedures are developed and investigated.

Both procedures assume system specifications to be given in

the frequency domain (i.e., specifications on the Fourier trans-

form of the system signals) and both procedures arrive at the

transfer function for the linear compensation. The method used

in the procedures takes an iterative approach in that a design

is made, then the system is simulated on a computer to test its

adequacy. If the design is unsatisfactory, a subsequent design

is made until either the system is satisfactory or instability

is reached. Application of the procedures to general systems

is limited because of the lack of a stability criterion; how-

ever, the procedures can be successfully applied to systems

with time-varying gains since a stability criterion exists

for such systems.
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CHAPTER I

INTRODUCTION

1.1 Description of the System

A block diagram of the system with which this work is con-

cerned is shown in Figure 1.1.

-H

Figure 1.1
Block Diagram of the Feedback

System Under Study

The block P represents the plant which can be described by a

linear differential equation with time-varying coefficients and

blocks G and H represent compensations. There is also 'associated

with the plant a form of ignorance in that it is assumed the

time-varying coefficients have known bounds on their variations

but the exact functional relationships of the variations are

unknown. All components are considered to be single input-

single output. The compensations are to be designed so that the

desired system response is obtained while the effects of the

plant time variations on the system output are reduced to an

acceptable level. This is to be done with a minimum amount of

noise transmitted to the plant input due to N.
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1.2 Histroical Background

Prior to 1950 there appeared to be little interest in time-

varying control systems, and consequently little research had

been done on such systems.' However, since 1950 more interest

has been shown in time-varying control systems primarily due to

the advent of such modern technology as rocket flight, space

exploration, and control of high performance aircraft. The

behavior of the plants of these systems can often be approximately

described by linear differential equations with time-varying

coefficients; thus, techniques have been sought which will aid

the control engineer in designing a suitable system around a

linear time-varying plant.2

The major portion of the work to date on linear time-

varying control systems has been done either directly in the

time domain, or some type of transform has been defined with the

subsequent investigation of this transform.

Time Domain Approach:

The time domain approach is the study of the system behavior

as functions of time. It is well-known that the output of a

linear system y(t) is related to the input of the system x(t) by

the superposition integral

y(t) = ft p(t,T) X(T) dT' (1-1)

where p(t,T) is the output of the system due to a unit impulse

applied at t = T and is defined as the system impulse response.3

For the time invariant case 4(t,T) is a function of t - T.



Friedland4 has formulated a representation of the impulse response

+(t,T) as a lower diagonal matrix where the i, jth element in the

matrix is the value of ~(t,T) at time t = t
i

due to an impulse

applied at time T = tj. This type of representation lends itself

readily to the analysis of sampled data systems since at the

sampling instances the integration is replaced by matrix multi-

plication. Cruz5 has worked on the synthesis of time-varying

control systems using the Friedland representation. The compen-

sations which he obtains are in the form of impulse responses.

These compensations are inevitably time-varying themselves, which

leads to the study of the synthesis of prescribed impulse

responses of time-varying systems.6,7

An algebra has been presented independently by Darlington,8

A. V. Solodav,9 and Stubberud1 0O which allows block diagram

manipulations of a system represented by differential equations.

This would allow the blocks of the system shown in Figure 1.1

to be combined into a single block represented by a linear time-

varying differential equation and could then be more easily

analyzed. Stubberud also recognized that if the system specifi-

cations were given in the form of a desired differential equation

of the overall system, then the method could be used as a synthe-

sis procedure. He has thus presented two synthesis techniques

for synthesizing a desired system differential equation from the

time-varying differential equation describing the plant. As in

the techniques employed by Cruz, the compensations which are

obtained by Stubberud are inevitably time-varying.

3
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Transform Approach:

Largely due to the success with which the Laplace and Fourier

transforms can be applied to differential equations with time

invariant coefficients, a number of investigators have sought

transform techniques which can be applied with equal success to

linear differential equations with time-varying coefficients.

The desired goal in these investigations is to arrive at a

technique which will yield general solutions to linear time-

varying differential equations merely by solving an algebraic

equation in the transform domain in much the same manner as a

differential equation with constant coefficients can be solved by

using the Laplace transform. Unfortunately, up to the present

time no transform technique has been found that can be applied to

a linear time-varying system in a practical manner.

Transforms have been found for special types of time-varying

differential equations. These special integral transforms include

the Laplace transform, the Mellin transform, and the Hankel

transform.11,12 The Laplace transform is used in the solution of

linear differential equations with constant coefficients, while

the Mellin transform is used to solve the equidimensional

(Euler-Cauchy) differential equation which is of the form

tn d tn -
1 d n -

1tn df+y(t) + a . . . + a0 y(t) = f(t),
dtn n-I dtn-l

and the Hankel transform can profitably be applied to Bessel's

equation which is of the form
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t2 d2y(t) + t dy(t) + (at2 - n2) = f(t).
dt2 dt

Unfortunately, neither the equidimensional equation nor Bessel's

equation possesses sufficient generality to be applied to the

time-varying system synthesis problem.

Aseltine1 3 has proposed a method of deriving a compatible

transform for a linear time-varying differential equation;

however, practically, the transform can only be obtained for a

second order time-varying system. Further, a block diagram

algebra cannot be developed since a transform which is compatible

with one part of a system will not generally be compatible with

another part of the system.

Naylor1 4 ,1 5 has taken an interesting approach in attempting

to obtain a system transformation. Working with the Friedland

characterization, he has defined the system transformation as a

matrix which, when properly applied to the Friedland characteriza-

tion of a system, results in a system matrix which is diagonal

and is thus easily manipulated. However, the transform domain of

the Naylor Transformation does not have a simple interpretation,

so that synthesis in this transform domain appears to be as

difficult as working directly in the time domain.

L. A Zadeh 16,17,18,19 has defined a system transformation

that is similar to the transfer function of a time-invariant

system. The transformation proposed by Zadeh which is referred to

as the system function is defined as
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1(t,jw) t J (t,T)ejm(t_ T)dT
-00

where 4(t,T) is the impulse response of the system. Cruz2 0 has

made a study of the system function and has proposed a technique

for synthesizing a desired system function provided, of course,

that such a desired system function is known. This work does not

consider the feedback problem. Kaplin2 1 has considered the system

function from a more analytical viewpoint and has presented

theorems which give some of its mathematical properties. Other

researchers2 2 ,2 3 ,2 4 ,2 5 , have also considered the Zadeh trans-

formation, but no significant progress has been made past the

purely mathematic description and the study of its general

characteristics.

1.3 General Considerations

In this section three of the more important aspects which will

affect the design of the system described in Section 1.1 will be

considered.

Plant Ignorance:

Although the plant can be described by a linear differential

equation with time-varying coefficients, it is assumed that these

variations are not known explicitly as functions of time. That

is, the plant has associated with it some type of ignorance. Such

an assumption is necessary in the formulation of the feedback

problem; otherwise, it would be possible in theory, at least, to

design a prefilter which would effectively cancel the parameter
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variations of the plant and feedback would not be mandatory2 6.

It will, therefore, be assumed that ranges for the values and the

rates of variations of the time-varying coefficients are known

but that the time of occurrance of the variation is unknown and

the exact rate and values of the variations are unknown. Figure

1.2 gives an illustration of what is assumed to be known and

unknown about the coefficients. Referring to Figure 1.2, the

range of an(t) is assumed to be A < an(t) < B, and the range of K

is assumed to be K1 < K < K2; however, the actual values of A',

B', and K as well as T are assumed to be unknown.

an(t)

B

B 1

t

Figure 1.2
Illustration of the Ignorance Assumed to
Be Associated with Each Coefficient

Due to the assumption that the plant is not completely known,

it is evident that the synthesis procedures of Stubberud1 0 and

Cruz,7 which arrive at time-varying compensations as mentioned in
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Section 1.1, cannot be used since these procedures rely on knowing

the equation coefficients explicitly as functions of time. Never-

theless, one may still consider whether or not time-varying

compensation might be superior to time-invariant compensation.

Under the ignorance assumptions just outlined, time-varying

compensation has no particular advantage over time-invariant

compensation. The argument leading to this conclusion is as

follows. The compensation cannot be used to cancel out

the plant parameter variations since they are not known exactly;

therefore, if time-varying compensation has an advantage over

time-invariant compensation, it must be due to the time-varying

compensator's superior signal processing properties or filtering

properties. However, to take advantage of the time-varying

compensator's signal processing properties, the time-varying

characteristics of the signal to be processed must be known.

But, these are not known in general due to the assumption of

plant ignorance which thus leads to the conclusion that there is

no particular advantage in using time-varying compensation. A

second consideration from a more practical point of view is the

fact that a time-varying compensator is much more difficult and

expensive to fabricate and would in all probability be physically

larger than a time-invariant compensator. Thus, even when the

plant is known exactly, it may be more advantageous to use time-

invariant compensation. For these reasons only time-invariant
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compensations will be considered in the synthesis of the system

of Figure 1.1

Specifications:

Several performance criteria have been established for linear

time-invariant systems which include step response criteria,

steady state error criteria, stability criteria and frequency

response criteria.2 7 Because of the linearity of the system, a

modified form of the majority of these criteria can still be used

in the linear time-varying system. Unfortunately, the stability

criteria of a linear time-invariant system cannot be applied to

a linear time-varying system.

The design criteria which will be used in this work is the

step response of the system. To justify the use of the step

response to judge system performance of linear time-varying

systems, one can argue that any input signal can be approximated

by a sum of step functions; and, due to the linearity of the

system, the system output will be the sum of the step responses

due to each individual step function in the input. Thus, a

reasonably well-behaved step response will imply a reasonably

well-behaved response to any input. A second justification

can be made by examining the reason for using the step response

as a performance criteria in a linear time-invariant system. In

a linear time-invariant system the impulse response c(t - T) and

the step response c(t) are related by
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+(t - T) = d c(g)

d I=t - T

and knowing ~(t - T) the system response to any input can be

determined. Thus, the performance of a linear time-invariant

system can be determined from its step response. If one could

obtain the impulse response of a time-varying system from its

step responses, then it would be possible to associate system

behavior with these step responses in the same way as is done in

the time-invariant system. Note that in time-varying systems

one would actually consider a number of different step responses,

each step response corresponding to a particular time of interest.

It will now be shown that the impulse response for a linear

time-varying system can be constructed from a set of step

responses of the system. Suppose the values of all system step

responses starting in the interval from t = 0 to t = t1 are

known at t = tl. Figure 1.3 shows one such step response c (t)

which is due to a step input applied at t = y. The value of a

step response evaluated at t = t1 due to a step input applied at

t = y is given by

c¥(tl) J t(tlT)dT. (1-2)Y



cY(t)

y ti t

Figure 1.3.

-Step Response Due to a

Step Input Applied at t = y

By considering t1

of y. Let

fixed and varying y, c (tl) becomes a function

X(y) = - cy(tl)

so that Equation (1-2) can be written

X(Y) = I
Y

tI
p (tl,T)dT.

Differentiating X(y) with respect to y one obtains the desired

result

dXy P(t 1 ,y)._ E )= '(t ,¥)
dy

Thus, with a time-varying system it is possible to associate

system behavior with its step responses.

11

0
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The design specifications will be assumed to be given in the

form of an acceptable step response. In principle step response

specifications can be given either in the time domain or the

frequency domain. Generally, step response specifications are

given in the time domain since one is normally aware of the

desired time domain response. The difficulty with frequency

domain specifications lies in the fact that it is not known

precisely what constitutes acceptable specifications. The basic

problem of translating time domain specifications into frequency

domain specifications and vice versa has yet to be solved2 8 ,

although investigations of single responses have been made by

researchers in the field.2 9 ,3 0 Nevertheless, frequency domain

specifications are desirable since by using such specifications

general design procedures can be developed which are not dependent

upon the order of the differential equation describing the system,

and thus such procedures are not limited to simple systems.

Further, the "cost of feedback" is clearly evident in the fre-

quency domain.28

This study will not attempt to solve the problem of translat-

ing time domain specifications into frequency domain specifica-

tions; rather, the necessary frequency domain specifications will

be assumed known. These specifications will be of the form of

a limit on the magnitude of the Fourier transform of the

difference in the actual system step response c(t) and a desired

system step response co(t). Some justification for such
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specifications can be seen from the Fourier transform of this

difference

E(jw) = f e(t)e-jwtdt
.00

where

e(t) = c(t).- co(t).

If E(jw) is "small" over the entire frequency range then e(t)

will also be "small". The exact relation between the magnitude

of the argument of'E(jw) and the magnitude of e(t) has yet to be

determined.

Stability Considerations:

Although a number of researchers have investigated the

stability of linear time-varying systems, necessary and sufficient

conditions have yet to be found which will insure the stability

of the system of Figure 1.131 A number of definitions and con-

cepts of stability exists; however, in this work a system will be

considered stable when it is bounded-input bounded-output stable.

That is, if the system input is bounded, then the system output

will also be bounded for a stable system.

Research in the stability of a time-varying system has taken

basically two approaches. The first is to examine the system's

differential equation or impulse response in the time domain;3 2 ,3 3

however, no practical results have been obtained which lend

themselves directly to the application to the system of Figure 1.1.
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The second approach has been to obtain a frequency domain sta-

bility criterion similar to the Nyquist stability criterion of

time-invariant systems.3 4 ' 3 5 Results have been limited to systems

in which the only time-varying element is the plant gain. Such a

system is illustrated in Figure 1.4.

-~~~H~ N

Figure 1.4
System with Time-varying Gain

However, even for this case only sufficient conditions for

stability have been determined rather than the necessary and

sufficient conditions which would be required for a completely

satisfactory stability criterion.

This thesis will not attempt to develop a stability criterion

for linear time-varying systems; rather, synthesis procedures will

be developed under the assumption of a stable system. It will be

seen that the procedures can easily be modified to include any

applicable stability criterion that specifies constraints on the

transfer function of the feedback compensation H. The sufficient

conditions for stability which have been developed for the system
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of Figure 1.4 represent such a criterion and the synthesis pro-

cedures will be modified appropriately to include this criterion

in the design of systems of the type shown in Figure 1.4.



CHAPTER II

DEVELOPMENT OF INPUT-OUTPUT RELATION AND SYSTEMS EQUATIONS

2.1 General

A number of representations exist which relate the output of

a linear system to its input. The differential equation itself

can be considered as one such representation. Unfortunately, the

differential equation is not directly useful as a design tool

because it does not allow for the system characteristics to be

readily observed in order that a suitable design can be developed.

It is thus desired that an input-output relation be found which

is suitable for the development of a design procedure.

An investigation of input-output relations was made in an

effort to find one which is well suited for design purposes. The

investigation centered on four functions in particular. The four

functions which were considered are:

(1) The impulse response 4(tT) which is defined as the

output of the system at time t due to a unit impulse

applied at time To2 1

(2) The system function which was introduced by Zadeh1 6

and is defined as

c (t,jw) = f t(t ,)e-Ji(t-)edT

(3) The complementary function which is defined by

(jw,T) = f (tT)e J(t)dt
T
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(4) The frequency impulse response which is defined by

co t

D(jw,jy) = / I (t,T)eJT e-jwt dT dt
_-c __ 2 7

is the Fourier transform of the output at frequency jw

due to the input of an unit impulse of frequency at jy.

A good deal of time was devoted to the study of these four

functions and a number of interesting properties were found and

investigated. However, none of the functions were found to lend

themselves to the development of a practical design procedure.

The difficulties encountered ranged from not being able to

evaluate the functions to not being able to determine the output

in terms of the input for systems having a feedback loop. An in-

depth discussion of this study will not be presented because the

results which were obtained generally have little bearing on the

design problem.

-The frequency impulse response was found to be useful because

of its notational convenience when studying the Fourier transform

of the various signals of the system. Because it is used later in

the work, the general characteristics of the frequency impulse

response will be presented and a discussion of the difficulties-

in employing the frequency impulse response will be given. The

difficulties encountered with the frequency impulse response are

representative of the type of difficulties encountered with the

other three.

A clarification of notation should be made before going

further. The term "frequency domain" refers to expressions as
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functions of frequency such as the Fourier transform representa-

tion of signals, the transfer function of a system or the frequency

impulse response of a system. The term "time domain" refers to

expressions as functions of time such as the impulse response or

a signal expressed as a function of time.

2.2 Properties of the Frequency Impulse Response

It would be possible to relate the frequency domain represen-

tation of the system output to that of the system input by first

employing a time domain relation such as the impulse response and

then taking the necessary Fourier transforms. However, it is more

convenient to employ the frequency impulse response since it is a

direct relation between the frequency domain representation of

the system output to that of the input. The frequency impulse

response is defined as

(j ,jy) = I/ f(tT) ej ejt dT dt (2-1)
-oo -00 2 

where $(tT) is the system impulse response, This function was

first mentioned by Zadeh who referred to it as the bi-frequency

transform;l 9 however, Zadeh gave no results of any study-he may

have made of this function. Kailath3 7 uses similar forms in his

study of time-varying filters. The author feels justified in

referring to this function as the frequency impulse response since

it possesses many characteristics in the frequency domain that the

impulse response exhibits in the time domain.
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Figure 2.1 is an illustration of a linear time-varying

system having an impulse response denoted by 1(t,T) and a fre-

quency impulse response denoted by ~(jw,jy). The differential

equation describing the system is assumed to be of the form

dnan(t) d x(t) + . . + ao(t) x(t) =
dtn

bm(t) am y(t) + . . . + bo(t)y(t) (2-2)
dtm

where an(t) O0 and n > m.

y(t) x(t)

Y(jw) | (jw,jy) X(jm)

Figure 2.1
Block Diagram of a Linear System

The primary reason for referring to D(jw,jy) as the frequency

impulse response is because it is the Fourier transform of the

system output evaluated at frequency jw due to an impulse of

frequency at jy. This, of course, is the frequency domain

equivalent of the impulse response. The property can be easily

demonstrated as follows. Let the system input be given by

y(t) = ejyt which is an unit impulse at frequency jy in the
2w

frequency domain49 The system output is given by3 8
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x(t) = f 4(tT) dT.
_~ 2~

Taking the Fourier transform of x(t), one obtains

00 t
X(j&) = f J 4(t,T) eJYT dT e-

jWt dt
_·0 -oo 2rr

which is the definition of the frequency impulse response given in

Equation (2-1).

If the system is time-invariant, the frequency impulse

response is given by

D(jw,jy) = 4(jw) 6(jy - jW) (2-3)

where O(jw) is the transfer function of the system. This result

is obtained as follows. Since the system is time-invariant, the

system impulse response is given by O(tT) = 4(t-T). Letting

T = t-u the frequency impulse response can be written as

D(jm,ijy) = 1 __ [ f (u)e-iYUdu e-(jw-jY)t dt.

The integral inside the brackets is the system transfer function

so that one can write

O(j ,jy) 1 j (jy) e- ( j - jY)t dt
2r _

or upon performing the integration4 9 one obtains

D(jw,jy) = D(jy) 6(jw - jy).
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Another important property of the frequency impulse response

is that the Fourier transform of the system output X(jw) is given

by the relation

X(jw) = f D(jw,jy) Y(jy) dy.
-Co

(2-4)

This expression

the output as

is obtained by taking the Fourier transform of

x(t) t dt.

X(jw) = I x(t) e-jwt dt. (2-5)

Expressing x(t) by

t
x(t) = f 4(t,T) y(T) dT

and expressing y(T) as the inverse Fourier transform

Equation (2-5) can be written

00 t 00 

X(jw) = f JI (t,) 1 / Y(jy) e- Ydy df
-00 - - 2 - -rr

of Y(jW),

e&jwt dt.

Interchanging the order of integration, the relation becomes

X(jw) [L 1 f (t,T) eY e jWt dz dt Y(jy) dy.
-Oo -2 O _

Recognizing the term inside the brackets as the definition of the.

frequency impulse response establishes Equation (2-4). The

frequency impulse response can be thought of as an operator which

operates through the relation expressed in Equation (2-4). Thus,
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Equation (2-4) can be referred to as O(jw,jy) operating on Y(jy)

with the result of the operation being X(jw).

Special consideration should be given to Equation (2-4)

because this relation demonstrates a basic difference in time-

varying systems and time-invariant systems. Suppose the system

were time-invariant with transfer function d(jw). Equation (2-4)

becomes the well-known relation

X(jw) = D(jo) Y(jw).

Observe that in the time-invariant system the value of the output

at frequency w is due only to the value of the input at w which

is weighted by the value of the transfer function at frequency w.

Thus, to determine the value of the output at a given frequency,

one only needs todetermine the value of the input and the

transfer function at that frequency. For the time-varying

system on the other hand, Equation (2-4) shows that the system

output at X is not only influenced by the system input at w. but

also by all other frequencies in the system input. The amount of

influence each frequency has on the system output is determined

by the weighting of the frequency impulse response at each

frequency. Therefore, to evaluate the output of a time-varying

system, one must determine the values of the system input at all

frequencies and the corresponding values of the frequency impulse

response instead of just the two values required in the time-

invariant system. The basic difficulty in time-varying systems is
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that a much larger number of frequencies must be considered than

in the time-invariant case.

If two systems are considered in parallel as shown in

Figure 2.2, the frequency impulse response for the parallel

combination is the sum of the frequency impulse responses of the

two systems. This is easily obtained from the fact that the

impulse response of two parallel systems is the sum of the impulse

responses of the two parallel systems.

Y X

cc
= (I ++-

X

Figure 2.2
Combining Systems in Parallel

Thus, the equivalent impulse response of the parallel system

shown in Figure 2.2 is given by

Pe (t,T) = .l(t,T) + 42(t,T)

_j
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Applying the definition of the frequency impulse response, :

Equation (2-1), to this relation yields the same property for the

frequency impulse response.

Cascade systems, unfortunately, do not combine as easily as

do parallel systems. The equivalent impulse response of two

systems in cascade as shown in Figure 2.3 is given by

YY X 
e(jwjiY) = f D2(jw,jS) 1 l(j6,jy) d6 (

-CO

Figure 2.3
Combining Systems in Cascade

This relation can be obtained by letting Y(jA) = 6(jX-jy). Since

the input is a unit impulse in the frequency domain, the Fourier

transform of the system output is the frequency impulse response

of the system. From Equation (2-4) the Fourier transform of the
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system output is obtained from the intermediate signal Z(jw) by

the relation

X(jw) = (jwjy) = e(jy ) = (jw,j) Z(j~) dC (2-7)

and Z(jS) is given by

00

Z(jo) = f i (j,jX) Y(jA) dX.

Substituting Y(jX) = 6(jX-jy) and performing the integration, one

obtains

Z(ji) = l (jS,jy).

Substituting the above relation into Equation (2-7) gives the

desired expression, Equation (2-6). Again, thinking of the

frequency impulse response as an operator, the cascading of two

operators results in a new operator be which is obtained by

letting the second operator 12 operate on the first operator 1'

Note that D2 operating on ~1 is not the same in general as 01

operating on 02.

Cascading a time-invariant system with a time-varying system

is quite simple. First assume that 2 in Figure 2.3 is time-

invariant. From Equation (2-3) the frequency impulse response of

52 is

D2 (Jwjy) = D2 (Ij) 6(J¥-j-w)
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Substituting this expression for ~2 into Equation (2-6), the

equivalent frequency impulse response is found to be

0e(ji,jy) = ~2(jW) 1(jwjy).-

Likewise, if .1 is time-invariant, be is given by

De(jw,j¥) = ~2 (jwjy) ~l(jy)o

Thus the time-invariant portions of a time-varying system are

easily handled by ordinary multiplication rather than the more

difficult integration process.

The concept of the inverse system9 is also important in

using the frequency impulse response. Figure 2°4 shows an

illustration of a system represented by p and its inverse

represented by C o

Y I I X=Y

System Inverse
System

Figure 2.4
Illustration of System and Inverse

The cascading of a system with its inverse results in a system

in which the output is equal to the input. Such a system will be

referred to as the unit system. The frequency impulse response
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of the unit system is found from the definition to be

4(jw,jY) = 6(jW- jy).

Thus, if either the inverse operates on the system or if the

system operates on the inverse, the resulting frequency impulse

response is 6(jw - Jy).

2.3 Discussion of the Frequency Impulse Response

In the early stages of the investigation it was hoped that

the frequency impulse response could be represented explicitly as

a function of frequency and could thus then be utilized in much

the same manner as is the transfer function for time-invariant

systems. This hope was not realized for all efforts to obtain an

explicit functional representation were, in general, unsuccessful.

However, in some instances it is possible to represent the

frequency impulse response by an explicit function of frequency.

Any attempt to obtain the frequency impulse response from a

direct application on the defintion is impossible except for

systems which can be described by first order differential

equations or by simple time-varying gains. This is due to the

fact that the impulse response of higher order time-varying

systems cannot be found in general. Also, for systems which can

be described by first order differential equations a closed

functional form cannot be obtained even with the time-varying

function specially chosen to aid the calculation.
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The simplest time-varying system consists of a time-varying

gain f(t). The frequency impulse response for this system is

obtained from a direct application of the definition, Equation

(2-1), and is found to be

B(jw,jy)= F(_j- ji)
2rr

where F(jA) is the Fourier transform of f(t).

The next type of system to consider is one which can be

described by a first order differential equation of the form

x(t) + f(t)x(t) = y(t) (2-8)

where y(t) is the system input and x(t) is the output. The

impulse response for this system is given by

4(t,T) = exp [- f f(t) dt] 

The frequency impulse response is found by applying Equation (2-1);

however, it is evident that unless f(t) is selected very carefully

the integrals cannot be evaluated and an explicit functional

representation of the frequency impulse response is not possible.

As an example, consider a system which is described by the

first order differential equation given in Equation (2-8) where

2e2 t + et
2 t tf(t) = 2t t °

e + e

The graph of f(t) is shown in Figure 2.5.
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f(t)

2I I II,::

-4 -3 -2 -1 0 1 2 3 4 t

Figure 2.5
Graph of f(t) Used in Example

It is easily verified that the system impulse response is given by

(t,T) =e2 + et u(t - T).2t t
e + e

A straightforward application of Equation (2-1) yields for the

frequency impulse response

6~~(jW~ ,jy) = ~(~ - jY) +00

D(ji,jy) =) + 1 f et e-(jw-jy)t dt
jy + 2 (jY+1)(jw+2) -a e2t+et

Note that even though the function f(t) was especially chosen, a

closed functional form of the frequency impulse response is still

not possible.

If the function is described by a differential equation of

order higher than one as given in Equation (2-2), the impulse

response cannot be determined in general and thus an expression

for the frequency impulse response cannot be found.
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It is possible, however, to determine the inverse frequency

impulse response of a differential equation of the form

an(t) x(t) + .. + ao(t)x(t) = y(t) (2-9)
dtn

where y(t) is the system input and x(t) is the system output.

The inverse system is also described by Equation (2-9); however,

in the inverse system x(t) is the input and y(t) is the output.

The frequency impulse response of the inverse system can be

found by employing the property that it is the Fourier transform

of the system output evaluated at jw due to an impulse of fre-

quency at jy applied to the input. An impulse of frequency is

applied to the input by setting

ejYt
x(t) = e- 

2rr

The output is easily found to be

(t) = [an(t)(j)n + * . + ao(t)] eyt (2-10)

Taking the Fourier transform of y(t) results in

-l(jw,jy) =T [y(t)] f y(t) e
-
jWt dt

=1 MAy (jy) )n + . o . + Ao(jjy) ] (2-11)
2Tr0 

where Ai(jX) is the Fourier transform of ai(t). Presumably the
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frequency impulse response can now be obtained by finding the

function D(jw,jy) which satisfies the equation

00

(jW - jy) =f 7 (jw,jx) -l(jX,jy) dX.
-00

Unfortunately, it was not possible to find the proper function

0(jw,jX) which satisfies the above relation for a general

0-l(jX,jy).

Note that the right hand side of Equation (2-9) can contain

a first order derivative of y(t) and the frequency impulse

response of the inverse system can still be found since the first

order differential equation can be solved. Thus, an expression

for the inverse frequency impulse response of a system of the

general form shown in Figure 2.6 can be obtained although the

expression will generally contain integrals which cannot be

evaluated in a closed functional form.

y(t) -X+_b(t) Z a(t) t) d(t)

y( f dy + b~t)Y = Z S an(t) dnx +...+ ao(t)x = z x

Block 1 Block 2

Figure 2.6
Type of Plant for Which an Expression of the Inverse

Frequency Impulse Response Can Be Obtained
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It should be emphasized that if the differential equation in

block 1 of Figure 2.6 is of order higher than ones an expression

for the inverse frequency impulse response cannot be obtained.

To summarize, it is seen that an expression for the frequency

impulse response cannot be obtained for all types of systems.

However, an expression can be obtained for time-varying gains and

for systems that can be described by first order differential

equations. Also, an expression for the inverse frequency impulse

response can be obtained for a system of the type shown in

Figure 2.6.

2.4 Development of System Equations

The system equations will now be developed utilizing the

frequency impulse response. The desired objective is to develop

an expression which will allow one to determine the Fourier

transform of the system output from the Fourier transform of the

system input. Equations will be found which give the desired

relation, but, unfortunately, cannot be solved to yield the values

of the system output.

For convenience the system is shown in Figure 2.7. A

detailed discussion of the noise transmission from the noise

source N is given in Section 4.7 and will not be considered at

this point. It is assumed that the time-invariant prefilter has

a transfer function G(jw), and the time-invariant feedback element

has a transfer function H(jw), while the time-varying plant has a

frequency impulse response P(jw,jy).
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Prefilter Plant N

-H

Feedback

Figure 2.7
System under Study

One form of the basic equation is developed as follows. The

system output is given in terms of the plant input by the

expression

0o

C(jw) = f P(jw,jy) Z(jy) dy- (2-12)
-. 0

and the plant input is given by the expression

Z(jy) = G(jy) R(jy) - H(jy) C(jy).

Substituting Z(jy) into Equation (2-12) one obtains

C(jw) = P(jw,jy)G(jy)R(jy)dy - f P(jw,jy)H(jy)C(jy)dy. (2-13)
_0, -00

This is a potentially useful relation since it relates the system

output to the system input. However, the equation is known as a

singular integral equation and, unfortunately, no general methods'

of solution are known for such equations.4 2 Obtaining a solution

33
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is doubly difficult in this case because of the complex expres-

sion for the frequency impulse response.

Equation (2-13) can be put in an alternate form by operating

on both sides with the frequency impulse response of the inverse

plant p-l(jx,jy). The resulting equation is

co

f p-l(jw,jy) C(jy) dy = G(jw) R(jw) - H(jw) C(jw) (2-14)
-CO

Again, this equation is a singular integral equation and cannot in

general be solved. However, because of the less complex expres-

sion for the inverse frequency impulse response of the class of

plants which can be described by Equation (2-9), one can come

closer to obtaining a solution from Equation (2-14) than from

Equation (2-13). As an example, assume the plant is a time-

varying gain f(t), the inverse of which can be described by a

function of the form

f-l(t)= K + Ae b t u(t).

Applying the results obtained in the last section, the inverse

frequency impulse response is found to be

p-l(jw,jy) = K 6(jw-jy) + 1 A
27rr b + jw - jy)

Substituting this expression into the integral term of Equation

(2-14), one obtains
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00 00

f p-l(jw,jy) C(jy) dy = I A 6(jw-jy) C(jy) dy
00o -00

00

+ If A C(jy) dy
2T _, (b-jw-jy)

The first integral on the right hand side is equal to C(jw).

With a proper interpretation the second integral can be evaluated

by contour integration. Instead of integrating the real variable

from minus infinity to plus infinity, the integral is first

multiplied and divided by j, then the complex variable s is

substituted for the variable jy with the path of integration along

the imaginary axis. Since C(s) is the Laplace transform of the

system output, IC(s)I goes to zero as Is! goes to infinity, and

the integral can thus be thought of as being integrated around a

closed path where the path encloses the right half plane.

Therefore, the integral can be written in the form

1 I -A C(s) ds
2Trj (s-b-jw)

where the path of integration encloses the right half plane. This

is in the form of Cauchy's integral formula5 0 and is evaluated as

-AC(jw+b).

Equation (2-14) thus can be written as

[A + H(jw)] C(jw) - A C(jw+b) = G(jw) R(jw) (2-15)

The problem now is to determine a function C(jw) which satisfies

Equation (2-15). Unfortunately, a method of determining the
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solution of Equation (2-15) has not been found. The most

promising approach has been to represent C(jw) as an infinite

series; however, no real success has been achieved by this

method. Although the above approach has not yielded an analytical

solution for the time-varying system, it does come the closest of

any method attempted.

An attempt to obtain an analytical expression for the system

output from either Equation (2-13) or (2-14) has been unsuccessful.

Thus, a different approach must be taken to develop a representa-

tion which may be used for design purposes.



CHAPTER III

DEVELOPMENT OF SYNTHESIS PROCEDURES

3.1 Introduction

In the last chapter an attempt to obtain a solution to the

time-varying system equations in the form of an explicit function

of frequency proved to be unsuccessful. Design procedures based

on the knowledge of such functions, therefore, cannot be developed.

The approach in this chapter is to develop equations and design

methods which lend themselves to numerical solutions of the

system equations. This approach should be more successful since

numerical solutions can be obtained from analog and digital

computer simulations. The difficulty is the development of

design procedures which can utilize such solutions.

A degree of success has been achieved in that two design

procedures based on numerical solutions have been developed.

Unfortunately, as was pointed out in Chapter I, a general

stability criterion is not available for linear time-varying

systems. Thus, it is not known whether the designs obtained by

these procedures are stable. When the plant has only a time-

varying gain, however, sufficient conditions for stability do

exist so that in such cases it is usually possible to arrive at a

stable design.

The two synthesis procedures will be presented in the

following sections together with illustrating examples.
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3.2 Synthesis Procedure One

This design procedure is based on a comparison of the actual

system step response to a desired system step response. The

approach is to design the system such that the magnitude of the

difference in the Fourier transforms of the actual system step

response and the desired step response falls within some

specified level. For this method the specifications are assumed

to be in the form

IE! = IC-Col < M (3-1)

where CO is the Fourier transform of the desired step response

and C is the Fourier transform of the actual step response. (See

Section 1.3.)

The primary reason for selecting such an approach is that the

system equation describing IEl lends itself to the development of

a practical design method. The procedure requires that a series

of designs be made in which each new design comes closer to

satisfying the specifications than the previous design. This

iterative procedure is continued until either a satisfactory

design is obtained or until the system becomes unstable.

The system design equations will now be developed. The

system is shown in Figure 3.1.
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C

N

Figure 3.1
System under Study

In order to simplify the notation, let

X = PY (3-2)

be the symbolical representation between the input Y of a block

and its corresponding output X. The inverse representation is

denoted by

Y = P-1X. (3-3)

Using this notation the system equation, Equation (2-14), can be

written

P-1C = GR-HC . (3-4)

Let the inverse time-varying plant be written in the form of the

sum of a time-varying component AP-1 and a time-invariant

component Po -. That is,

P-l = P 1I + Ap--0, +rl- (3-5)
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Also, the system output C can be written as

C = CO + E (3-6)

where Co is the desired output and E is the error. Substituting

these expressions for p-1 and C into Equation (3-4) one can

obtain

P-1 E + Po-lCo + AP-1 Co + HCo + HE = GR. (3-7)

The prefilter G is now defined such that if the plant becomes Po,

the system step response is the desired response Co. Thus, the

following equation is also satisfied

Po- Co + HCo = GR. (3-8)

Employing the relationship expressed in Equation (3-8), Equation

(3-7) becomes

Po-1E + HE = -P - 1 (C +E) . (3-9)

Equation (3-9) is the design equation which is employed in

this design procedure. The equation is expressed in full

notational form as

p -l(j) E(jw) + H(jw) E(jw) =

-j Ap-l(jmjy) [Co(Jy) + E(jy) ] dy (3-10)

where Po-l(ij) is the transfer function of the time-invariant

portion of the inverse plant. As was discussed in Section (2.4)
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this equation is a singular integral equation and no general

method of solution is known. Thus, it is not possible to solve

for E as an explicit function of frequency. Nonetheless, the

equation can be used to arrive at a design procedure.

Equation (3-10) is written in the form

E(jw) =

-1 / AP-l(jw,jy) [Co(jy) + E(jy)] dy . (3-11)

Po-l(jw) + H(jw) -_

Applying the specifications given in Inequality (3-1), one obtains

IE(jw) I=
(3-12)

-1 | | J Ap-l(jm,jy) [Co(jy) + E(jy)] dy < M.

Po - l (jW) + H(jw) -,

From the above relation it appears that if system stability can

be maintained, it may be possible to reduce the magnitude of the

error to any desired level by increasing the magnitude of H.

Note that H is the only term over which the designer has direct

control. It is shown in Appendix A that except in one case the

magnitude of the error can indeed be reduced to as small a value

as desired by increasing the magnitude of H provided system

stability can be maintained. The one exception is at X = o and

with the plant not having an integrator. That-is, if the plant were

time-invariant, the system would be classified as type o.41

It is possible to design a system which will meet the specifi-

cations simply by increasing the magnitude of H to some
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arbitrarily large value. This is not a satisfactory approach,

however, because as the magnitude of H is increased, the trans-

mission of the noise from the noise source N to the plant input

is increased proportionately. Thus, it is desired to increase

the magnitude of H no more than absolutely necessary in order to

satisfy the specifications. The design method presented in this

section will not directly yield the optimal design, but the

method does provide a systematic approach to increasing the

magnitude of H. In order to approach the optimal design, the

designer must utilize the insight gained from the application of

the design procedure. As has been mentioned, the procedure

involves an iteration technique where a design is made and then

tested. If the specifications are not satisfied, a subsequent

design is made based on the previous design. The subsequent

design will come closer to satisfying the specification than the

previous design.

In order to begin the iteration procedure an initial design

must first be made. Any stable design could be used as the

starting design; however, such an approach could yield excessive

iterations and would not lend itself to the systematic study of

the system. One possible approach would be to assume that the

plant were time-invariant but that the parameters could take on

any constant value within their ranges of variation. The design

could be made under this assumption using the methods presented

by Horowitz.2 8
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Another approach is to begin with Equation (3-13) and assume

that the integral term involving the error is zero. If the time-

variations were known as functions of time, the remainder of the

equation could usually be solved analytically and a design made

based on this analytical solution.

The second approach of obtaining a starting design will be

presented with the design procedure; however, this is not to

imply that the second approach is superior to the first. The

second approach is given because it is not included in the

literature elsewhere as is the first approach. The second

approach is also used in the examples given in this section

because the time-variations are assumed to be functions of time.

The design method will now be presented. For convenience,

the design equation is rewritten in Equation (3-13) as

E(jw) = (j) Io(jw) + f Ap-i(jw,jy)E(jy) d] (3-13)

where

X(jW) = -1 (3-14)

Po-l(jw) + H(jw)

and

co

Io(ji) = f Ap-(jw,jy)Co(jy)dy . (3-15)
--c
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First Iteration:

The function to be determined is A(jw). For the first

iteration let A(jw) be denoted by Ao(jm).

Step 1

Assume that

00

f Ap-l(jw,jy)E(jy)dy = 0 (3-16)
-CO

so that Equation (3-13) becomes

E(jw) = Xo(jw)Io(J).- (3-17)

Applying the specifications one obtains

IE(jw)l I Xo(ji)l II(jo)I < M(W) (3-18)

which by using Equation (3-14) can be rewritten as

IIo(jw)I
IO(i) < I IP -1 (jw) + H(jw)|. (3-19)

M(X)

Step 2

Since the term IIo(j)l| depends upon the plant parameter

variations, it will take on a range of values in the complex

plane. This range is determined for several frequencies of

interest. Regions are then determined in the complex plane

which correspond to the values of Io(jw)/M(w). From these

regions a region of acceptable values of H(jw) is determined

in the complex plane for each frequency of interest.
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Step 3

Determine an H(jw) as a function of jw such that it lies

within the acceptable regions found in Step 2 and such that

IH(jw)I is as small as possible. This step is actually an

exercise in curve fitting and the H(jw) which is selected

will depend upon the desired simplicity of the compensation

network as well as the experience of the designer. Let the

H(jW) selected in this step be denoted Ho(jO).

Step 4

The prefilter G(jw) is determined from Equation (3-4).

Solving Equation (3-4) for G(jw) one obtains

G(jw) = [P-(j() +H o (j ) Co (3-20
R(jw)

which completes the first design.

Since Ho(jw) was designed under the assumption expressed in

Equation (3-16), it will in all probability not be a satisfactory.

design. In order to determine whether or not this first design

satisfies the specifications the design is simulated on an analog

or digital computer and the frequency domain representation of the

error is obtained. Let the error of the first design be denoted .

Eo(jw). Note that the simulation is merely the means of obtaining

the solution to the equation

Eo(jw) = Xo(jo) Io(j) + f AP- (jw,jy)Eo(jy)dy]. (3-21)
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The magnitude of Eo(jw) can now be compared to the specifi-

cations M(W)o If Eo(jw) does not meet the specifications over

part of the frequency range, another compensation which will be

denoted Xl(jw) must be designed. In order to see the philosophy

behind the design of Al(jw) let the error which corresponds to

the X1 (jw) design be written as

El(jy) = E,(jy) + El(jy). (3-22)

The equation which gives El(jw) can then be written

El(jw) = Al(jw)
(3-23)

-00 co-00

Io(jW) + f AP-I(jw,jy)Eo(jy)dy + f AP-l(jw,jy)l(jy)dy .

The first integral in Equation (3-23) is obtained from Equation

(3-21) as

co

f AP-l(jm,jy)Eo(jy)dy = Eo(jW) - Io(JY). (3-24)

The value of the second integral in Equation (3-23) is unknown;

thus, as with the assumption expressed in Equation (3-16) it is

assumed that

co

j AP-l(j ,j¥y)El(jy)dy = 0. (3-25)
-00

Substituting Equations (3-24) and (3-25) into Equation (3-23) and

applying the specifications one obtains
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(3-26)l (ji)I I)E0o ) I < M(X).

l X0 (jw) I

This inequality is then used to determine Xl(ji).

Second Iteration:

Step 1

Simulate the design which was obtained in the first iteration

on an analog or digital computer and obtain the maximum value

of the magnitude of the frequency domain representation of

the error which is denoted Eom(jw) for the frequencies of

interest.

Step 2

Determine the maximum value of Xl(jw) from the relation

IXl(jIw)I < M(j) I ) 
Eom(iJ)

IXl(j ) I_< I Xo(J ) I

for Eom(jw) > M(M) (3-27a)

for Eom(jw) < M(X). (3-27b)

Employing equation (3-14) this relation can be rewritten as

E o(j) M( - IP°-l(J) + Hl(jw) I for

IX (jw)1 T < IPo-1 (jw) + HI(jw)l for

Eom (jW) > M(U)

(3-28a)

Eom (ij) < M(U).

(3-28b)
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Step 3

Determine the region of acceptable H(jw) in the complex plane

from Inequality (3-28) for the frequencies of interest.

Step 4

Determine an Hl(jw) as a function of jW such that it lies

within the regions of acceptable H(jw) found in Step 3 and

such that IHI(jw) l is as small as possible.

Step 5

Determine the prefilter G(jw) from Equation (3-20).

The subsequent iterations are identical to the second itera-

tion. If the compensation can be designed to yield a stable

system at each iteration, the method will eventually yield an

acceptable design since IX(jw)l of each new design is smaller

than IX(jm)l of the previous design. The method itself implies

nothing concerning the stability of the system so that a sta-

bility criterion must be applied as a separate part of the

design. Any stability criterion which is expressed in the

frequency domain can be integrated into the design procedure by

using the criterion to modify the regions of acceptable H(jw)

while the basic procedure remains unchanged.

An example will now be presented. The purpose of the

example is to illustrate the mechanism of the procedure so the

design itself will not be carried to completion. Discussion of

the important considerations in setting specifications and
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in choosing the desired transfer function and the nominal plant

is also given in this example.

Design Example One

Let the plant be described by the first order differential

equation

f(t)c(t) = y(t) (3-29)

where

f(t) = k1 + k2 [1 - e
-

(T ) U(t-r) (3-30)

and

0.1 < k, < 1

0.1 < k
1

+ k2 < 1

0.1 < a < 10.

It is assumed that the value of T is unknown. From the above

statement it is seen that the function f(t) can vary exponentially

between any value in the range from .1 to 1 with no restrictions

on when the variation can take place. A block diagram of the

system is shown in Figure 3.2.

R Y 

G I' t
~

I f(t)c(t) = y(t)

Figure 3.2
Block Diagram of System in Example
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Let the desired step response be given by

co(t) = (l-e-t)u(t).

In specifying co(t) one should insure that it is possible for

the plant to deliver such a response. That is, the designer

should insure that there exists a reasonable plant input such

that the actual output of the plant will be close to the desired

output. This qualitative check is an obvious one since no

amount of feedback can make the plant deliver what it is not

capable of delivering. For this example if the plant output

c(t) were to equal co(t) then the plant input would be given by

y(t) = f(t) e-tu(t)

which is a function that imposes no unreasonable demands, in

theory at least, on the compensations G and H. That is, y(t)

contains no impulses or derivatives of impulses.

A second consideration is the specification M. At high

frequencies the time-varying plant can be approximated by a

time-invariant plant4 3 so that at high frequencies IE(jw)I can be

rewritten

IE PGR PoGRM(). (3-31)
1 + PH 1 + PH

The magnitude of the functions G, R, H, P, and Po must all go to

zero as X becomes large and since 1 >> IPHI then
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IEl " IP-Pol IGRI < M(X). (3-32)

But by Equation (3-20) GR is chosen as

GR = (Po-1 + H)CO (3-33)

so that

E 1(P-P) + H]Co < M(X)
P

or

P 1 + PH - Po < M(m). (3-34)

Note that since Po is time-invariant then

Po 1 = 1.

Po

Since IPHI << 1 and IPoHI << 1 then one can write

IE(ijw)1)I PW(j) - 1 C ) < M(). (3-35)

From this formulation it is evident that M(w), Co(jw) and PO(jw)

cannot be chosen in a completely arbitrary manner if the specifi-

cations at high frequency are to be met. Note that if a poor

selection of M is made such that M goes to zero faster than C
o
at

high frequency, the specifications can never be satisfied at the'

higher frequencies. This difficulty can be avoided if M is
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chosen as a constant at high frequencies. With M as a constant at

high frequencies, the specifications can always be met by choosing

the magnitude of the feedback compensation H large enough to

satisfy the specifications over the lower frequencies (provided

stability can be maintained) up to the point where Inequality

(3-35) will be satisfied by C
o
going to zero. Intuitively it

appears that there should be no difficulty in letting M be some

arbitrarily small number at high frequencies although this may

not be true in all cases. At any rate, Inequality (3-35) must be

satisfied in the high frequency range.

The specification for the example must now be chosen.

Since frequency domain specifications have received little study

there is no definite basis on which to choose the specifications

for the example. Rather than attempt to relate time domain and

frequency domain specifications at this point, specifications

will be chosen arbitrarily. Let M for the example be chosen as. a

constant of value 0.06. Thus

M(M) = 0.06

so that

IE(jw)I = IC(jw) - Co(j)I < 0.06

The nominal plant PO(jw) must now be chosen. No definite

rule can be deduced concerning the selection of PO(jo); however,

a guide line can be determined upon examination of Equation (3-13).

Equation (3-13) can be written in the form
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E(jw) =

0o

X(jW) f [P-l(jo,jy) - Po-l(j,jy)] Co(jy) + E(jy) ] dy

The object is to choose JX(jw)f as large as possible and still

have IE(j') | fall within specifications. Obviously, the smaller

the value of the magnitude of the integral, the larger IX(ji))-

can be for a given -E(jw) . The nominal plant P -l(jw,jy)

should be chosen such that the magnitude of the integral will be

as small as possible.

The design equation for this example will now be determined.

Note that the differential equation describing the plant is in

the general form of Equation (2-9) so that the frequency impulse

response of the inverse plant is evaluated as-shown in Equations

(2-10) and (2-11). The frequency impulse response of the inverse

plant is found to be

P-l(jy,jw) = j[kl + 2] (jy jw)
2

+ J e- (JY - JW)T
27 ijy jW jy - jW +-a m

The nominal plant must now be determined. Let the transfer

function of the nominal plant be given by Po(jw). Referring to-

Section 2.2, since the nominal plant is time-invariant, the fre-

quency impulse response of the nominal plant is given by

Po-l(jy,jw) = Po-l(jw)6(jy - Jw)
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so that AP-l(jy,jw) is found to be

aPjj [[ + jk2 i j P (j)1 (j -3 w)

+ jAk2 e-(JY - jw)T _ 1 1 1 (3-36)
2r jy - jm j - j + a

Substituting the above expression for Ap-1 (jy,jm) into Equation

(3-13) and rearranging terms, one obtains

E(jy) [[k + 2 jy i + H(jy)] = - [k1 + 2] ijy - Po(jy)I CO(y)
L 2 -2

+ f k2 e-(jy jW)T - C(jw)dw.
-_ 2r[jy - jw jy - ji + a I

It is desired to select Po-l(jy) such that the magnitude of the

right hand side of this equation is as small as possible. The

only term in the equation that involves Po-l(jw) is the first

term on the right hand side. The possible values of the second

term which is the integral term are not known so that the "best"

Po-l(jw) cannot be determined. As an alternative Po-l(jm) will

be chosen such that the magnitude of the first term will be a

minimum. Since k1 + k2/2 can range from .1 to 1, the nominal

plant is chosen to fall half way between .1 and 1 or

Po-l(jw) = 0.55jw. Thus AP-l(jy,jw) is given by Equation (3-36)

with Po-l(jw) = 0.55jw.

The first step in the first iteration of the design procedure

is to determine Io(jy) which is given by



55

co

Io(jy) = f AP-l(jy,jb)Co(jw)dw

or

00 00

Io(jy) = f P-l(jy,jw)C(j)dw - f P-l(jy,jw)Co(jw)dw. (3-37)
-00--o

The first integral in Equation (3-37) is the Fourier transform of

the input to the plant when the plant output is co(t) and the

second integral is the Fourier transform of the input to the

nominal plant when the output is co(t) so that the expression for

Io(jy) can be written as

Io(J) = (kl - 0.55)

+ k2 [1 - e- (t- T)]u(t- ) etu(t)e-jYtdt.

Evaluating this integral one obtains

kl - 0.55 +k2 [ 1 - eat <O
j.1 + 1 jW + aj + +1

Io(j¥)=

kl - 0.55 1 e-(1 + jo)z z>O
jw + 1 [jco + 1 jW + a + 1I

(3-38)

The second step in the first iteration is to determine the

regions in the complex plane for several frequencies of interest

such that H(jw) falling within these regions insures that
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Inequality (3-27) is satisfied. Inequality (3-27) can be

written as

IIo(jw)l < M(w) = 0.06

IPo-l(ju) + H(jw)l

which is equivalent to

|I°(jW)l 1PO(jw)I <o.o6
I1 + Po(jw)H(jw) I

Letting

Po(jw)H(jw) = Lo(jw)

the inequality can be expressed as

< 11 + Lo(jw)l.
0.06

The problem now becomes that of determining acceptable regions for

Lo(jw). Notice that the acceptable regions of Lo(jw) take on the

form of circles in the complex plane centered at the point -1

and having radius equal to IPo(jw)I IIom(jw) /0.06 where Iom(jw>)

is the maximum value of lIo(jwl for the particular frequency of

interest. Using a digital computer, the maximum value of Io(jw)

was obtained from Equation (3-38) for values of w equal to 0.5,

1, 2, and 5. The boundaries of the acceptable regions of Lo(jw)

for these values of Lo(jw) are shown plotted in Figure 3.3. Note
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that the acceptable regions of Lo(jw) lie on the outside of these

circles. The third step in the design procedure is to determine

a Lo(jw) which will just lie within the acceptable region found

above. The function selected for Lo(jW) is

Lo (jw) = 24.8(jw + 2)

jw(jw + 1)(jw + 4)

and is also shown plotted in Figure 3.3.

The fourth and final step in the first iteration of the

design procedure is to determine the prefilter G(jw) from the

equation

G(jw) = [1 + Lo(j)] Co(jw) (3-39)
Po(jw)R(jw)

This is a straightforward matter of substituting Lo(ju),P o (jm),

and Co(jw)/R(jw) into the expression for G(jw) and simplifying.

The expression for G(jw) was found to be

G(jw) = 0.55(jw)3 + 2.75(jw)2 + 18 .56(jw) + 32.73

(jw)3 + 6(jw)2 + 9(ji) + 4

In order to determine whether or not this design actually

meets the specification, the system was simulated on an analog

computer and IEo(jw) l was obtained at selected frequencies for a

number of step responses using different values of kl,, k2, c

and T . The values of IEO(jw)l were determined directly from

the analog computer using the method presented by Dick and

Wertz4 4 for obtaining the Fourier transform of a signal on an
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analog computer. An envelope of the maximum values of IEo(jw)l

is shown plotted in Figure 3.4. Observe that the specifications

are not met and that a second iteration must be made.

The first step in the second iteration which is the simu-

lation of the design and the obtaining of Eo(jw)I has been

accomplished. The second iteration will start directly with the

second step. The second step in the procedure is determing the

values of IPo-l(ji) + Hl(jw)I such that Inequality (3-28) is

satisfied for a number of frequencies of interest. Inequality

(3-28) can be written in the following form

11 + LO(jw)I IEo(jw)l < I1 + Ll(jw)l for IEo(ir)I > M(X)
M(U)

I1 + LO(jw)I < 1i + Ll(jo)l for IEo(jw)I < M(@)

which, for this example, becomes

1 + Lo(jw)l IEo(jW)l < |1 + Ll(j).l for IEo(jw)I > 0.06 (3-40a)
0.06

1 + Lo(jw)l <_ I1 + Ll(jw)l for IEo(jw)l I< 0.06. (3-40b)

Note that the left hand side of the above inequalities can easily

be determined from the plot of IEom0(jw) shown in Figure 3.4 and

the plot of Lo(jw) shown in Figure 3.3.

The third step is the determination of the regions of

acceptable values of Ll(jw) in the complex plane. These regions

are found from Inequalities (3-40) and are shown plotted in
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Figure 3.5

Boundaries of Acceptable Regions of Ll(jw)
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Figure 3.5 for several values of w. The boundaries take on the

form of circles centered about the point -1 with radius equal

to the larger of the two values 11 + Lo(jw)I IEom(jw)I/0.06 or

|1 + Lo(jw)I. The acceptable regions lie on the outside of these

circles.

The fourth step is determining Ll(jw) such that it lies

within the acceptable regions found in step three and is as small

in magnitude as possible. The Ll(jw) which was selected is

476 (jw + 1.5) (je)2 + 6(jw) + 36]

Ll(jw) = jwojw + 1) [(jw)2 +12(jw) + (12)2 ](jw + 12)

The polar plot of this function is shown in Figure 3.6.

The fifth and final step in the second iteration of the

design procedure is determining G(jw) from Equation (3-39)

which was found to be

G(jw) =

.55(jw)5+ 13.75(jw)4 + 433.4(jw)3 + 3,072(jw)2 + 12,732jw + 14,138

(jw)5 + 26(jw)4 + 337(jw)3 + 2,328(jm)2 + 3,744jw + 1,728

This completes the second iteration of the design procedure.

In order to determine whether or not this design meets

specifications, the system was simulated on an analog computer and

IE1 (jw) l was found for a number of step responses corresponding to

different values of kl, k2, a, and T at selected frequencies. The

envelope of these is shown in Figure 3.7a. It is seen that the

specifications are satisfied; thus, the design may be considered

acceptable.
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Although this completes the first example, some comments

are in order. Even though the system meets specifications it

must be noted that the design is not necessarily the best design

possible. As has been pointed out, the best design is that

design which will meet specification with as small a value of

H(jw) as possible in order to minimize the noise transmission

from the plant output to the plant input. When the best design

has been obtained the design inequalities will become equalities

except at high frequencies. In a system where it is particularly

important to have IH(jw)| as small as possible, more iterations

may be made using the inequality

I1 + Lo(jo)l IEO(j) w) I|1 + Li(JW)

M(w)

for all values of w. The subscript zero represents the present

design and the subscript one represents the subsequent design.

Using this procedure the designer should be able to gain con-

siderable insight into a particular system and thus arrive at a

design which is closer to the best design. It should also be

noted that system stability was not considered in the example.

If an applicable stability criterion is determined, the criterion

will place restrictions on.H(jw) which can then be incorporated

into the procedure by modifying the acceptable region of H(jw) or

equivalently L(jw) in the complex plane.
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A second design examplewill now be presented which illus-

trates a modification that can be made in the design equation

although the procedure basically remains unchanged.

Design Example Two

The plant of this design example is described by the second

order differential equation

g(t)x(t) + f(t)x(t) = y(t)

where

f(t) = F1 + F2 (1 - e
-
a (t - T1))u(t - T1 )

g(t) = G1 + G2(1 - e- b(t - T 2 ))u(t - T2 )

and

0.01

0.1

0.1

< Gi <1 ;

< F1 < 0.25 ;

<a < 10 ;

0.01

0.1

0.1

It is also assumed that T 1 and

response is given by

< G1 + G2 < 1

< F1 + F2 < 0.25

<b < 10

T
2
are unknown. The desired step

c (t) = [1 - e-1' 4 tcos(1.414t) + 0.98 sin(1.414t)] u(t).

The frequency domain representation of c (t) is
0

C0 (jw) =
4

jw [(jw)2 + 2.8jw + 4]
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The specifications are arbitrarily chosen as

M(U) = Max 5 0.01
(jw + 1)(jw + 5) . 1

A plot of these specifications for low frequency is shown in

Figure 3.7b. Note that the specifications are consistent with the

considerations discussed in Example One. That is, the desired

plant output does not impose unreasonable demands on the plant

input and it is possible for IH(jw)l to go to zero at high

frequency and still meet the specifications since M(X) goes to a

constant value at high frequency. Following the procedure

illustrated in Example One, the nominal plant was chosen as

Po-l(j) = 0.505(jw)2 + 0.175jw

and the frequency impulse response of the inverse plant was

found to be

P-(jy,jw) [(G1 + G2) (j) 2 + (F 1 + F2 )jw] 6(jy - ji)
.2 2

(jm)2 e-(jy - jw)T 2 + jwe-(jy - j- )T1

2Tr(jy - jw)

(jw) 2 e-(Y - jW)T l _
jw e-(JY - w) (3-41)

.2Tr(jy - jw + b) 2r(jy - jw + a)

Let the portion of P-l(jy,jw) which is multiplied by 6(jy - jw)

be denoted by Pa-l(jw). Note that Pa-l(jw)6(jy-jw) has the form

of a time-invariant plant (see Section 2.2), while Pb-l(jy,jw)
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represents a time-varying plant. Thus, separating the frequency

impulse response of the inverse plant into components

Pa-l(jw)6(jy - jw) and Pb-l(jy,jw) effectively separates the

plant into its time-varying and time-invariant components.

The function AP
-
l (jy,jw) can now be written as

AP-l(jy,jw) = P-l(jy,ji) - Po-l(jy,jw)

or

AP (jy,jw) = [Pa-l(jI) - Pol(iw)] 6(j - ) + Pb-l(jyi,j)+

(3-42)

Figure 3.7b
Low Frequency Specification

Of Design Example Two

The design equation, Equation (3-13), can be written as
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Po-l(jy) + H(j,) (j) [Co(ji) + E(jI)] dw.

(3-43)

Substituting Equation (3-42) into Equation (3-43) one obtains

-1 [c

E(jy) = Po-l(jy) + H(jy) [L

+ f Ap-l(ji,jy)Co(jw)dw
--CO

Evaluating the first itegral

(3-44) can be written

where

[Pa l (j o ) - Po l'(j c ) ] 6(jy-jo)E(jw)dw

00
+ f Pb-'(jY,jw)E(jw)dw

--co

(3-44)

and solving for E(jy), Equation

(3-45)

(3-46)

and

X(jy) =
-1

Pa-l(jy) + H(jy)

(3-47)

This equation can now be substituted in place of Equation

(3-13) in the synthesis procedure. The advantage in using

Equation (3-45) can be seen by comparing the terms which are

ignored in the first step of the first iteration. By using

Equation (3-13) the entire integral

E(jy) = A(iy) [Io(Jy) + I Pb- (jyj)E(jw)d]

Io(Jy) = f AP-l(jy,jw)Co(jw)dw
-CO
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f Ap-1 (jm,jy)E(jy)dy

is assumed equal to zero (see Equation (3-16)), while by using

Equation (3-45) only the term

f Pb- (jy,jw)E(jw)dw

is assumed equal to zero.

The first step in the design procedure is to assume

Pb- (jy,jw)E(jw)dw = 0 (3-48)

then apply the specifications to E(jy) as follows

IE(jy)l = I (jy)Io(Jy)l < M(y).

Using Equation (3-47) this can be written

IIo(JY)I _< IPa-1 (jy) + H(jy) i (3-49)

M(y)

Note that both Io(jy) and Pa-l(jy) depend upon the plant parameters

so that the ranges in the complex plane of both of these functions

must be considered in determining the acceptable range of H(jy).

It must be observed at this point that Io(jy) and Pa-1 (jy) are not

independent. However, to simplify the task of determining the

acceptable regions of H(jy) from Inequality (3-49) it will be

assumed that Io(jy) and Pa-l(jy) are independent. This assumption
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should not introduce any more error than is inherently present in

the first iteration due to the assumption expressed in Equation

(3-48).

Since Pa-l(jw) is obtained by inspection from Equation

(3-41), it only remains to determine Io(jy) which is given by

cO

Io(jY) = AP-l(jY,jw)Co(jw)dw
c0,

or

00 00

I(jy) = f P-l(jY,jw)Co(jw)dw - I Po-'(jy,j0)Co(jw)dw.
-00 -. 00

This is equivalent to the Fourier transform of the plant input

with the plant output equal to co(t) minus the Fourier transform

of the nominal plant input with the nominal plant output equal to

co (t). Thus, Io(jy) is given by

Io(jy) = G3 + G2 [1 - e
-
b (t - 2) u(t - T2)

[4e-l.4 tcos(1.414t) - 3.96e-1.4tsin(1.414t)] u(t)

+ [F3 + F2 [1 - eat - )] (t - T1 )]

2.83 ewheresin(.414t) } ejYtdt

where

G
3
= G1 - 0.505
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and

F
3
= F

1
- 0.175.

Performing this straightforward but lengthy integration, a compli-

cated expression for Io(jy) is obtained consisting of four

functions for different ranges of T1 and T2. This expression is

given in Appendix B.

The second step in the synthesis procedure is to determine

the regions in the complex plane at-selected frequencies which

correspond to Io(jy) and Pa-l(jw) for different values of the

plant parameters. From these two regions corresponding to

Io(jy) and Pa-l(jy) one can determine acceptable regions of H(jy).

This was done for y equal to 1, 5, 10, 20, 30, and 50. The

resulting acceptable regions for H(jy) are shown in Figure 3.8.

The third step is to select an H(jy) which falls within the

acceptable regions determined in Step 2. Because of the limited

size of the analog computer available, it was necessary to limit

the feedback compensation to third order. The compensation which

was chosen is

H(jy) = 31.54 (jy + 0.5) (jy + 5) (jy + 50)
(jy + 2) (jy + 30) (jy + 80)

The polar plot of H(jy) is also shown in Figure 3.8.

The fourth and final step in the first iteration is the

determination of the prefilter G(jy) from Equation (3-28) which

was found to be
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G(jy) =

2(jy)5 + 227(jy)4 + 5497(jy)3 + 1853(jy)2 + 3 8 3 6 7 jy + 15769

(jy)5 + 115(jy)4 + 2938(jy)3 + 12584(jy)2 + 23920jy + 19200

The system was simulated on an analog computer and E(jy)

was found for a number of step responses corresponding to

different values of the plant parameters. The envelope of the

maximum value of these E(jy) is shown plotted in Figures 3.9a

and 3.9b. Observe that the specifications are met except at

very low frequencies. This illustrates the basic procedure so a

second iteration will not be made. Note that IEI is reasonably

close to the specifications except at low frequency. Thus, the

second H would be similar to the first except for a higher gain

at low frequencies.

Although the designs in the two examples were not carried to

completion, it appears that there is no difficulty in carrying out

the steps in design procedure one. It remains to be seen how

easily a design that is close to optimal can be achieved through

the procedure.. A basic assumption in the procedure is that the

regions of acceptable L(jw) are circular as shown in Figures 3.3

and 3.5. In the second example it was possible to arrive at

acceptable regions which were not circular; however, this was only

true for the initial design. It would be necessary in subsequent

designs to assume circular regions. If the regions of acceptable

L(jw) are, in fact, circular, especially in the region of L(jw),

then the design procedure should lead to a design that is close
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to optinal. If the assumption of circular regions is grossly in

error, it would be more difficult to arrive at a design which is

close to optimal.

The second design procedure will now be presented. Like the

first procedure, the second procedure is an iterative process.

However, the assumption that the regions of acceptable L are

circular is not made in the second procedure so that a design

which is close to optimal may be able to be obtained in a more

straightforward manner than is possible in the first procedure.

3.3 Synthesis Procedure Two

The procedure is similar to the synthesis procedure presented

by I. M. Horowitz4 5 for time-invariant systems having ignorance,

with the exception that iterations must be performed for a time-

varying system. In this procedure the specifications are given

in the form

kl< ) k 2 (3-50a)

Co (jw)

01 < arg [C(jw) - Co(ij)] < 02. (3-50b)

The design equation for this procedure will now be developed.

Referring to Section 2.4, the system is described by the equation

H(jw)C(jw) + Y(jw) = G(jw)R(jw)

where Y(jw) is the Fourier transform of the input to the plant.

Factoring C(jw) from the left hand side of the equation one

obtains
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H(j ) + Y(JC)] C(jw) = G(jw)R(jw) . (3-51)

c(jW)

Under the conditions that the plant is at its nominal time-

invariant value the system will be described by the equation

H(jw) + 1 Co(jw) = G(jcw)R(j)i. (3-52)

Po(Ji)

Dividing Equation (3-51) by Equation (3-52) one obtains

[H(jw) + y(jw)] C(jW) 1

H(j +) + P Co( )

Multiplying the numerator and denominator of the right hand side

by PO(jw) and letting

Po(jw)H(jw) = Lo(jw)

the equation can be written

C(jW) = 1 + Lo(jw) (3-53)
Co(jw) Y(j) ) +

C(jw) Po(jw) + Lo(jw)

Letting the ratio of the plant output to the plant input be

denoted by

p (ji) - C(j )
eq(jw) )
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Equation (3-53) can be written

C(jw) = 1 + Lo(jm) (3-54)

Co(jw) P- - (ji) + Lo(jW)
Peq (J)

For the time-invariant case with ignorance Peq(jw) is the

transfer function of the unknown time-invariant plant. Using the

procedure presented by Horowitz, it is possible to determine

acceptable regions for Lo(jw) from the region in the complex plane

corresponding to the possible values of Peq(jw). For the time-

invariant case the values of Peq(jw) are dependent only upon the

plant parameters so that knowing the ranges of these plant

parameters it is possible to determine the range of Peq(jw) in

the complex plane. However, for the time-varying case Peq(jw)

is dependent not only upon the plant and its variations but also

upon the plant input which in turn depends upon the feedback

compensation H(jw). Thus, Peq(jw) depends upon Lo(jw) in the time-

varying case. This presents difficulty since Lo(jw) is not known

prior to the design.

To circumvent this difficulty an iteration procedure is

employed where an initial design is made and tested. If the

specifications are not satisfied, a second design is made based

on the region of Po/Peq corresponding to the first design. If

additional designs are required, each is based on the regions of

Po/Peq corresponding to the previous design. In this scheme the

designer must use his judgment because there is no guarantee that
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the procedure will lead to a satisfactory design if mechanically

followed. Intuitively, however, it appears that the procedure

should lead to a satisfactory design. If large changes in H are

required, the procedure will at least call for changes which are

in the proper direction to improve the design. If relatively

small changes in H are needed, the regions of Po/Peq should show

little change from one design to the next so that regions of Po/Peq

which are very close to being correct will be used in the design

with the result that a proper design will be made. It is con-

ceivable that difficulty could arise in starting with a design

which requires large modifications in H. There is nothing in the

procedure which prevents an oscillatory effect. That is, the

first design may require a large increase in IHI and the second

design may call for a large decrease in IHI back to the first

design. Of course, in such a case the designer would apply his

judgment and not decrease IHI as much as specified. It is

important that the designer consider all previous designs and

their corresponding regions of Po/Peq when making a new design to

avoid one that is similar to a design which has previously been

shown to be unacceptable.

The steps in the second design procedure will now be

presented. As in design procedure one, the initial design is a

starting point for the iteration procedure. As was discussed in

design procedure one, the initial design may be any stable design;

however, it would be better to start from a more definite design

such as one based on a time-invariant plant with ignorance. The
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approach to obtaining an initial design which is given is based

on the assumption that the plant output is the desired plant

output for all variations. It is also assumed that the time-

variations are known as functions of time so that analytical

calculations can be made.

First Iteration

Step One

Assuming that

C(jw) = Co(jw)

determine Po(jw)/Peq(jw) from the expression

PO(jW)- Po(jW)Y(j) = Po(jW) c
P°(J)i P° (J)Y(J) = )f P°()/ p-l(jw,jy)Co(jy)dy (3-55)

Peq (ji) CO (jQ) Co (j) -0

for a number of frequencies of interest. Plot the range of

Po(ji)/Peq(jw) in the complex plane for the possible plant

parameter variations.

Step Two

Using the procedure outlined by Horowitz4 5 determine the

acceptable regions of Lo(jw) at a number of frequencies of

interest and design a Lo(jw) which falls within these

acceptable regions.

Step Three

Determine the prefilter G(jw) from the relation

G(jw) = 1 + Lo(j)] () (3-56)

Po(jw)R(jw)
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The preliminary design is now complete.

This first design is simulated on a computer in order to

determine whether or not the system satisfies its specifications.

If the preliminary design is unsatisfactory, which presumably it

will be, a second iteration must be made.

Second Iteration

Step One

From the computer simulation of the previous design, determine

the range of Po/Peq in the complex plane for the possible

plant parameter variations.

Step Two

Repeat steps two and three of the First Iteration.

Subsequent iterations are made until a satisfactory design is

obtained. It should again be emphasized that the designer must

consider not only the ranges of Po/Peq corresponding to the last

design, but also the ranges corresponding to all previous designs.

What the designer must guard against is an iteration leading to a

design which has previously been found to be unsatisfactory. There

is nothing inherent in the design procedure itself which prevents

such an occurrance so the designer must consider all previous

ranges of Po/Peq in each new design. An exmmple illustrating this

synthesis procedure will now be presented. Again, the purpose of

the design is to illustrate the procedure rather than arrive at an

optimal design for the particular system considered.
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Design Example Three

The plant which was considered in Design Example Two will be

used in this example. Since a design was made in Design Example

Two, it will be of interest to compare the regions of

Po(ji)/Peq(jw) with the Lo(jw) which was obtained in Design

Example Two. In order to utilize the design of Design Example

Two, the specifications of that example must be put in a form

compatible with this design procedure. That is, the specifica-

tions must be put in the form

kl _<5C(j) < k2 (3-57a)

01 5 Arg [C(jw) - Co(ji)] 02 (3-57b)

instead of the form

IC(jw) - Co(jw)I < M(@). (3-58)

Note that Inequality (3-58) defines, a region in the complex plane

in which C(jw) must fall. Likewise, Inequalities (3-57) also

define a region in the complex plane in which C(jw) must fall.

The specifications are given in Figure 3.7 so that one must.

determine the values of kl, k2 , 01, and 02 such that the region

defined by Inequalities (3-57) corresponds to the region defined

by Inequality (3-58). The shapes of the two regions are not the

same so that values of kl, k2, 01, 02 can only be chosen such that

the region defined by Inequalities (3-57) is approximately the
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same as the region defined by Inequality (3-58). The values which

transfer the specifications of Figure 3.7 to specifications which

can be used with Inequalities (3-57) are listed in Table 3.1.

X kl k2 01 2

1 .36 1.55 - 350 -35°

5 0 3.6 -180° 1800

10 0 11 -180° 1800

20 0 24 -180° 1800

100 0 2.5 (10)3 -180o 1800

400 0 1.6 (10)7 -180° 1800

500 0 3.1 (10)7 -180° 1800

Table 3.1
System Specifications

The first step of the first iteration is to determine the

range in the complex plane of the values of Po(jw)/Peq(jw) under

the assumption that C(jw) = Co(jw). The expression for .

Po(ji)/Peq(jw) is given in Appendix C. The regions in the com-

plex plane corresponding to the values of Po(jw)/Peq(jw) for w

equal to 1, 10, 20, 100, 400, and 500 are shown in Figures 3.10a

and 3.10b.

Step two of the procedure is to determine the acceptable

region for Lo(jw). Using the specifications given in Table 3.1

the acceptable regions for Lo(jw) were determined from the regions

shown in Figures 3.10a and 3.10b. These acceptable regions for
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Lo(jw) are shown in Figures 3.11a and 3.1lb. Also shown on the

figure is the polar plot of Li(jw) which was designed in Design

Example Two. It is known that this compensation satisfies the

specifications except at very low frequency; however, it is seen

from the figure that Ll(jw) does not fall within the acceptable

regions. Two conclusions can be drawn from these figures. The

first is that at least for this problem the approximation

C(jW) = Co(jw) is a poor one. The second is that a compensation

which is designed on the basis of these acceptable regions will in

all probability more than meet the specifications since its

magnitude would be considerably larger than the magnitude of

L1 (jO).

A second iteration will now be made. However, instead of

designing a compensation based on the regions of Figures 3.11a

and 3.11b the Ll(jm) which was designed in Design Example Two

will be used. The system was simulated on an analog computer and

C(jw) and Z(jw) were evaluated from this computer simulation for

a number of variations of g(t) and f(t). The values of

Po(jw)Z(jw)/C(jw) for these variations were then plotted in the

complex plane. This plot of points was used to determine the

range of Po(jW)/Peq(jw) . These ranges of Po(ji)/Peq(ji) were

determined for values of w equal to 1, 5, and 10 and are shown in

Figure 3.12. The range of Po(jw)/Peq(jw) for higher frequencies

could not be determined due to practical limitations of the analog

computer available. These ranges were next used to determine the

acceptable regions of Lo(jw) which are shown in Figure 3.13.
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A polar plot of Li(jw) is also shown in Figure 3.13. It is

first noted that Ll(jw) evaluated at X equal to one does not fall

within the corresponding acceptable region for Lo(jw). This is

not surprising since the specifications in the last example were

not met at low frequency using LI(jw). However, at w equal to

5 and 10, Li(jw)'does not fall within the corresponding acceptable

region even though it is known that Ll(jw) does meet the specifi-

cations in Design Example Two at these frequencies. This is

partially due to the fact that the specifications listed in

Table 3.1 are not exactly equivalent to the specifications given

in Figure 3.7; however, the primary error comes from the analog

computer calculations and in determining the region of

Po(j0)/Peq(jw) from these calculations.

The next step in the procedure would be to design a second

Lo(jw) based on the regions shown in Figure 3.13. Such a design

will not be carried out since the basic method has been illustra-

ted; however, note that the magnitude of Lo(jw) of such a second

design would be greater than the magnitude of Ll(jw). Thus, a

second design would be a step in the right direction toward

meeting the specifications as given in Table 3.1.

3.4 Summary

Two design procedures which rely on the numerical,solution of

the system equation via computer simulation have been presented.

Simple design examples have also been carried out which demon-

strate that it is possible to perform the required steps in the
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procedures; however, an optimal design has yet to be obtained.

It is of interest to consider the similarities and differ-

ences in the two procedures. Even though the procedures appear

to be quite different they are actually very much alike. Note

that in both procedures the design of the nominal loop gain Lo

is carried out in the same manner in that acceptable regions are

determined and an Lo is designed to fall within these acceptable

regions. Also, it is shown in the next chapter that the specifi-

cations for the two procedures can be made identical. Thus, the

only basic difference in the two procedures is that in procedure

one it is assumed that the shape of the regions of acceptable Lo

are circular, while in procedure two the shape of the regions of

acceptable-Lo are determined in the procedure itself. Observe

that because of this assumption procedure one is more easily

applied than procedure two. In procedure one it is only necessary

to determine the maximum value of IEI while in procedure two it is

necessary to determine the complete region of Po/Peqo It is seen

in the next chapter that the price paid for the simpler calcula-

tion in procedure one is the greater difficulty in arriving at an

optimal design.

A major difficulty in the procedures is the determination of

the maximum value of |El and the region of Po/Peq. The method

which is presently employed is to run representations of all

possible time-variations. Unfortunately, even where there are

only one or two time-varying parameters a large number of runs

are required. If a system has several time-varying parameters,
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the number of combinations of time-variations are prohibitively

large to test representative samples of all possible time-

variations. Thus, for systems having several time-varying

parameters a procedure is needed for determining the worst case

variations without having to perform a search over all possible

variations.

In this chapter the examples demonstrated that it is possible

to carry out the steps in the procedures using numerical solutions

from computer simulation. However, the examples do not have the

depth necessary to observe the advantages and disadvantages of

the procedures nor do they illustrate how a design close to the

optimal design may be obtained. In the next chapter the design

of a system having a time-varying gain is carried out in depth

so that greater insight into the procedures can be obtained.



CHAPTER IV

DESIGN EXAMPLE

4.1 Introduction

Previous examples have demonstrated the steps in the two

design procedures with little consideration given to the practical

problems encountered in carrying out these steps or of the perform-

ance of the system involved. In this chapter a design example will

be considered with greater depth of study in an effort not only to

gain further insight into the design procedures but also to consider

the practical problems associated with the procedures, as well as to

investigate the performance of the system. The example which will

be considered is shown in Figure 4.1.

R C

N

<e H(s)

Figure 4.1
Design Example

The function f(t) is a time-varying gain which can vary between 1

and 10. The general structure of f(t) will be discussed in more

detail later in the chapter. Although this example may appear

rather restricted, note that it is a special case of a more general

class of systems where the only time-varying element is a time-

varying gain as shown in Figure 4.2.
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Plant Plant
Input Output

v > Pl1aP(s) f(t)

Figure 4.2
General Structure of Plant Where Only

Time-Varying Element Is a Gain

The portions of the plant P1 and P2 are linear and time-

invariant with the time-varying gain represented by f(t). Although

P1 and P2 are integral portions of the plant and cannot be modified

by the designer, any system having such a plant can be put in the

form shown in Figure 4.3 so that P1 and P2 can be considered as

integral portions of the compensations G and L.

R C

Figure 4.3
General System with Time-Varying Gain

In addition since P2(s) is a known transfer function at the

system output, system specifications on C can be obtained from the

system specifications on C. The portions of the plant P1 and P2,

therefore, need not be considered in the study of the time-varying

characteristics of the system. Also, since G(s) is primarily a

prefilter, the salient properties of the class of systems which

have only a time-varying gain can be investigated by considering

only the time-varying gain with a feedback loop for compensation.
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Results of the design example shown in Figure 4.1 can thus be

applied to the more general class of systems as shown in Figure 4.3

where f(t) varies by a factor of ten. The transfer function has

been included in the plant of the example so that the wave forms of

the time-invariant system will be familiar and the effects of the

time-variation will be more clearly evident.

4.2 Methods of Calculations

Since the design procedures require numerical calculations of

the Fourier transform for various signals in the system, it was

necessary to derive a method for performing these calculations. Due

to the fact that both design procedures require a search over the

possible time variations for several frequencies, any method used

must not only be accurate but also must be able to be performed

quickly in order that a fairly large number of calculations may be

made within a reasonable period of time.

The first approach was to simulate the system on an analog

computer and calculate the required Fourier transform directly on

the computer. This technique, which is described in Reference (443

is relatively fast and the results are satisfactory as long as the

value of the Fourier transform is above the noise level of the

computer and the run time of the computer can be accurately timed.

A disadvantage of this approach is that a separate run is required

for each value of frequency unless a large computer is available

with at least six amplifiers for each frequency of interest in

addition to the system simulation requirements. A major difficulty

in analog computation, however, is the synthesis of time variations.

The method of producing variations must be of such precision that
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the variations can be duplicated for repeated calculations of the

Fourier transform at different frequencies, yet it must be flexible

enough so that the characteristics of the variations may be quickly

altered. The ability to precisely control and quickly change

exponential variations on the analog computer is the primary reason

for these type variations in the examples of the previous chapter.

The computer system used for this first approach consisted of a

Beckman 2200 analog computer and an SDS model 920 digital computer

which had been combined into a hybrid system. The Beckman analog

computer is a fully shielded, solid state, ± 100 volt machine. The

particular configuration consisted of a total of 36 amplifiers and

four multipliers along with a complement of logic and an accurate

real time clock. In addition, there were sufficient servo potentio-

meters to provide satisfactory hybrid operation. The SDS digital

computer had an 8K storage with a high speed paper tape reader and

teletypewriter input-output.

Use of the analog computer alone proved to be, on the whole,

unsatisfactory. It is required that the operator make each run, and

read and record the values of the calculated Fourier transform.

This in itself is a lengthy procedure; but, in addition, calcula-

tions must be made on each data point and the result plotted. The

entire process proved to be extremely lengthy.

By utilizing the full hybrid capabilities of the computer,

calculation times were significantly reduced. The digital computer

was programmed to change the time variations, control the analog

computer, read the computed values, perform the required calculation,

and print the results. Thus, many more calculations could be
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performed with the hybrid configuration in a given time than with

the analog alone.

The analog computer's method of calculating the numerical

Fourier transform proved satisfactory for the first design procedure;

however, in the second design procedure difficulties were encoun-

tered with this method of computation. In the second design pro-

cedure it is necessary to compute the Fourier transform of the

system output. Since the system input is a step function, the

system output generally goes to a constant value which will be

denoted Cu. In such a case the numerical computation methods yield

the sum of the Fourier transform and the constant CG. Thus, in

order to determine the Fourier transform it is necessary to subtract

the constant C, from the computed result. For the majority of

frequencies it was found that the difference in C- and the computed

results was small. This means that the inaccuracies, which are

small in comparison to the large value of the computed result, are

large when compared to the small value of the difference in C. and

the computed result. Thus, in many cases it was impossible to

obtain an accurate value of the Fourier transform of the system

output with the analog method of computation.

In an effort to eliminate this problem with the second design

procedure, it was decided to use the digital computer to calculate

the numerical Fourier transform instead of the analog computer.

This approach would allow for a more accurate computation of the

transform. The procedure was to simulate the system on the analog

computer, sample and store the sample values of the signals of

interest, which in the case of the second design procedure are the
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plant input and plant output, then compute the values of the Fourier

transform at the frequencies of interest. The algorithm described

in Reference (48) was used to compute the numerical Fourier trans-

form of the sampled signals. At this time the system was simulated

on an EAI-TR20 analog computer with a PDP9-L digital computer being

used to sample the signals and perform the numerical calculations.

The combination could not be considered a hybrid computer since the

digital computer could not be used to control the analog computer.

Although a number of calculations were performed on this set of

computers, the attempt on the whole was considered a failure. The

lack of success was not due to the methods of computation which were

basically sound but to the inadequacy of the computers themselves.

This attempt illustrates the fact that relatively sophisticated

computers are required for the necessary computations in the two

design procedures.

The necessary simulations and Fourier transform calculations of

the example in this chapter were done wholly on a digital computer.

The computer used was an IBM 1130 with a core storage capacity of

16K with three disk drives. The basic program used to simulate the

system was the Continuous System Modeling Program for the IBM 1130

computer. The program was modified by the addition of several

subroutines for the purposes of storing signals, calculating the

Fourier transform, modifying the time-variations, and printing

results. The primary disadvantage to this approach is that it

requires a good deal more time to make a calculation than with the

hybrid computer. To illustrate the difference in run time, assume

it is necessary to calculate the Fourier transform at five fre-
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quencies for a signal of ten seconds duration. On a hybrid computer

with the Fourier transform calculated on the analog portion of the

computer, one run would require ten seconds of computation time with

five runs being required. Add approximately 30 seconds additional

time to allow for data reading and parameter changing and the total

time becomes 80 seconds. The digital computer requires from two to

four minutes to generate the required signals of a third or fourth

order system plus approximately 30 seconds to calculate the Fourier

transform at each frequency for a total run time of approximately

five minutes. This time increases substantially as the order of the

system increases. The primary advantage in using the digital

simulation is the increase in accuracy that is obtainable. However,

onealso gains other advantages. Time-variations are easily

simulated and modified on the digital computer so that it is

possible to develop search techniques for determining the worst case

variations which is required in the first design procedure and for

generating randomly varying variations which is required in the

second design procedure. Thus, once the program is started the

operator need do nothing more until a solution is obtained.

4.3 Specification

As was discussed in Chapter One, system specifications are

more commonly given in the time domain than in the frequency domain;

thus, there is no reservoir of experience upon which to draw in

assigning frequency domain specifications as there is for time

domain specifications. In order to determine realistic frequency

domain specifications for the example considered in this chapter, it

will be necessary to first consider the acceptable system step



101

response in the time domain and then attempt to relate these to the

frequency domain. The approach will not be rigorous but will

consist of examining the magnitude of the Fourier transform of a

sampling of error functions and assigning a frequency domain

specification based upon this examination.

Consider the first form of frequency domain specification

which is given by

IC(jw)- C0 (j))I = IE(jw)I < M(w) (4-1)

where C
o

is the desired step response, C is the actual step

response, and M is a real number which can depend upon X . The form

of this specification naturally suggests a time domain specification

of the form

fc(t) - Co(t) (e(t)( cm(t)< m(t).

There are two graphical interpretations of this relation. The

specification given by

Ic(t) - co(t) <I m(t) (4-2)

corresponds to a symmetrical envelope about the desired step

response within which the actual step response must fall. Such a

specification is shown in Figure 4.4.
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c(t)

Figure 4.4 -
Time Domain Specifications as Envelope

About Desired Step Response

The specification can also be expressed in the form

le(t)l < m(t) (4-3)

which corresponds to a symmetrical envelope about the time-axis as

shown in Figure 4.5.

e(t)

t

Figure 4.5
Time Domain Specifications as Upper

Bound on Error

In this form the specification represents an upper bound on the

error. Although the specifications given in inequalities (4-2) and

(4-3) are equivalent, the specification as given in inequality (4-3)

is somewhat more convenient to study since it is independent of the

f,



103

desired step response. In all probability, however, the specifica-

tion for any particular system will first be established in the form

of inequality (4-2) since one is generally more familiar with

acceptable step responses than with acceptable error functions.

For the example considered in this chapter, it will be assumed

that the desired system transfer function is given by

T(s) = s2 + 2.8s + 4

This transfer function will occur in the system of the example if

the gain is constant at 4 and the compensations are given by

H(s) = G(s) = s + 2
s + 2.8

The transfer function corresponds to a second order system having a

damping ratio of 0.7 and an undamped natural frequency of 2. The

step response of this transfer function, which is the desired step

response, is shown in Figure 4.6.

In assigning the specification envelope, consideration must be

given to the usual time domain specifications of rise time, over-

shoot and settling time. The rise time determines how quickly the

lower bound of the envelope must increase while the peak overshoot

determines the maximum values of the envelope's upper bound and the

settling time determines how quickly the envelope must converge to

the final value. In the final analysis, however, it will be neces-

sary to assign an acceptable minimum step response and an acceptable

maximum step response. These maximum and minimum step responses will

constitute the specification envelope. Note that the time domain

specification given in inequality (4-2) demands that the envelope be

symmetrical about the desired step response. If the maximum and

minimum step responses are not symmetrical about the desired step

response, the desired step response must be redefined such that this
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symmetry is achieved. The assumed specification envelope for the

example is shown in Figure 4.6 with the desired step response.

This envelope corresponds to a minimum rise time of approximately

1.5 seconds, a peak overshoot of 30% and a maximum settling time

of 8.5 seconds.

The upper bound on the error which corresponds to the specifi-

cation in Figure 4.6 is shown in Figure 4.7. The problem now is to

determine the frequency domain equivalent of this specification in

the form'of an upper bound on the magnitude of the Fourier trans-

form of the error. This frequency domain specification will be in

a form as shown in Figure 4.8.

M( w)

Figure 4.8
Form of Frequency Domain Specification

The desired objective is to determine the frequency domain envelope

M(X) such that if the magnitude of the Fourier transform of the

error is less than or equal to the maximum value M(w), the error

will fall within the time domain envelope given in Figure 4.7.

A difficulty is now encountered which again emphasizes the

complexity of the problem of obtaining frequency domain' specifica-

tions from time domain specifications and vice-versa. Assume that

an error e(t) satisfies the time domain specification of Figure 4.7

and the magnitude of the Fourier transform IE(jw)l satisfies the

frequency domain specification of Figure 4.8. Let the error e(t)

be shifted in time by the amount T such that e(t - T) now lies
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outside the time domain specification. The Fourier transform of

e(t-T) is E(jw)e-JwT which has the same magnitude as the Fourier

transform of e(t) and thus will still satisfy the frequency domain

specification. The reason for this difficulty is due to the fact

that e(t-t) is nonminimum phase so that the uniqueness between

phase and magnitude does not hold. Thus there is no unique rela-

tionship between the error e(t) and the magnitude of its Fourier

transform. It is easily seen then that if the frequency domain

specification is given in the form shown in Figure 4.8 and-the time

domain specification is given in the form shown in Figure 4.7, there

will always be functions which will satisfy the frequency domain

specifications and yet violate the time domain specifications.

In stable systems it is generally the case that the maximum

error will occur relatively close to the origin, then will settle

to zero. Otherwise, the actual step response would closely follow

the desired step response through its maximum change; then, after

attaining the final value would show a deviation. It would be

necessary for a system to possess some form of large time delay to

exhibit such behavior. Since there is a large class of systems

which do not possess such time delays and therefore will not

exhibit a delayed error, it will still be assumed that the time

domain specification is given in the form of Figure 4.7.

A number of possible error functions and their Fourier trans-

form magnitudes will now be examined in order to determine the

error function characteristics in the frequency domain.

Figure 4.9a shows four functions which, for different values

of time, lie on but do not exceed the error bound m(t). Figure 4.9b
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shows a plot of the magnitude of their Fourier transforms. Also

shown for comparison is the magnitude of the Fourier transform of

the time domain envelope m(t). An error function that is exactly

equal to m(t) has the largest zero frequency component allowable

since this component is equal to the area under the curve. But

since m(t) has'few variations, its higher frequency component would

be smaller than might be allowed. Functions 2 and 3 shown in

Figure 4.9a cross the zero axis leaving about as much negative area

as positive area and thus would be expected to have a relatively

small low frequency component. Note that the type of variation for

all four functions is similar so they would be expected to have

similar higher frequency components. This is shown in Figure 4.9b

where all four functions exhibit peaking around w = 1.5, then

decrease rather quickly toward zero. Function 2 exhibits the

greatest amount of variations in the time domain which shows up in

the frequency domain as a little larger high frequency component

than is observed in the other three functions.

Figure 4.10a shows a series of error functions which has a

relatively large variation then settles fairly quickly to zero.

The frequency domain representations are shown in Figure 4.10b. As

expected, all exhibit a relatively small zero frequency component

since the areas under the curves are relatively small. The higher

frequency components depend upon the particular variations. If the

variations show an oscillation effect as does Function 5, the higher

frequency components will be larger; whereas, if the error deviates

from zero only once then returns to zero as does Function 6, the

higher frequency component will be smaller.
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Shown in Figure 4.11a is a series of functions having relative-

ly low frequency oscillatory tendencies but remaining within the

time domain error bounds. The magnitudes of their Fourier trans-

forms are shown in Figure 4.11bo The oscillatory tendency is

evident in large frequency components in the region of u equal from

2 to 3. Note that Function 10 is smaller than the other three, and

thus its Fourier transform is also smaller in magnitude.

Figure 4.12a shows two functions which fall within the time

domain error bound but are highly oscillatory. The magnitudes of

their Fourier transforms are shown in Figure 4012b. As expected,

the oscillations show up as large high frequency componentso

It would also be of interest to observe the effects in the

frequency domain of a single fast variation. Figure 40 13a shows

such a function with its frequency domain representation shown in

Figure 40 13b.

Although the error functions shown in Figures 4°9 through 4o13

represent a small sample of the possible error functions, they were

selected from the functions investigated because they give a good

representation of the error functions possessing Fourier transforms

with large magnitudes which are the types of functions that will

establish the error bound in the frequency domain. The low fre-

quency bound, that is, in the region from 0 to 1 radian per second,

will be established by the Fourier transform of m(t) wh'ich is shown

in Figure 40 9b. This is because as was previously mentioned m(t)

has the largest low frequency component allowable. To establish the

high frequency bound, it is observed that the magnitude of the
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functions shown is less than .03 for w greater than seven radians

per second unless the functions are highly oscillatory as shown in

Figure 4.10a. Such oscillatory functions are generally undesirable

even though they do not exceed the time domain error bound, and

thus the high frequency bound should be set small enough to exclude

these undesirable functions. Nevertheless, a high frequency

oscillation of small magnitude is often considered acceptable; thus,

instead of assigning a very small value for high frequencies, a

relatively large value will be selected for the high frequency

bound. The minimum value of the frequency domain bound at high

frequencies will be selected as 0.05.

The frequency domain specification must now be established in

the mid-frequency range. A minimum frequency domain envelope would

be established by the magnitude of the Fourier transform of the time

domain envelope m(t) which is shown in Figure 4.14. Also shown in

Figure 4.14 are additional envelopes, the inclusion of which will

allow additional types of functions. The envelope labeled A will

allow Function 7 of Figures 4.10 and the Function shown in Figures

4.13. Note the similarity of these two functions. The envelope

labeled B will allow the functions shown in Figures 4.9 and the

functions shown in Figures 4.10 with the exception of Function 5.

Observe that the large oscillatory nature of Function 5 excludes it

from this set. The envelope labeled C allows all functions shown in

Figures 4.10 and 4.11. The envelope labeled D is included in

Figure 4.14 to demonstrate the large magnitude required in the

region of w equal to five to six to include the highly oscillatory
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functions shown in Figures 4.12. The error functions allowed by

the envelope labeled B will be assumed to be acceptable in the

example; thus, the magnitude labeled B will be selected as the

frequency domain specifications. This selection will exclude the

oscillatory type of functions shown in Figures 4.11 and 4.12 but

will include functions having a high degree of variations.

As was discussed earlier, it is possible for the frequency

domain specifications to be satisfied and the time domain specifi-

cations to be violated. With this in mind, it would be of interest

to examine the magnitudes of the Fourier transform of a sampling of

functions which violate the time domain specification but may be

expected to satisfy the frequency domain specifications. Such

functions could not have large oscillations for they would surely

violate the frequency domain specification at high frequency, nor

could such functions have large deviation without being oscillatory

for they would then violate the low frequency specifications. One

possible type of function that may violate the time domain specifi-

cation but satisfy the frequency domain specification would increase

slowly to a value outside the time domain specification then return

to zero before the frequency domain specifications are violated at

low frequency. Three possible functions are shown in Figure 4.15a

with their Fourier transform magnitudes shown in Figure 4.15b. Even

though functions 15 and 16 violate the time domain specification

only a relatively small amount, the frequency domain specifications

are nonetheless violated at low frequency. Function 17, on the

other hand, does not violate the frequency domain specifications

while the time domain specifications are violated. This, of course,
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is because the magnitude of function 17 does not become large

enough to have too large an area under the curve but does not

return to zero quickly enough to avoid violating the time domain

specifications. Functions such as function 17 cannot be eliminated

by altering the frequency domain specifications without also

excluding the desirable functions. However, the slowly settling

component in such functions is probably due to poles near the

origin as would occur if L(jw) (see Figure 4.3) were assigned a

zero near the origin and the magnitude of L(jw) were not sufficient-

ly large in the low frequency range. If functions of this type

occur, the cause will probably be evident and can thus be eliminated

from the design.

Another type of function which could possibly violate the time

domain specification but not the frequency domain specification

would quickly reach a point outside the time domain specification

then return to zero to avoid violating the frequency domain specifi-

cation at low frequency. Two such functions are shown in Figure

4 16a with their Fourier transform magnitudes shown in Figure 4 16b.

Even though function 18 violates the time domain specifications, it

would in fact satisfy these specifications if it were shifted

properly in time. Function 18 violates the frequency domain

specification only slightly at X equal to five radians per second

while function 19 completely satisfies the frequency doriain

specification. Note that the magnitude of the Fourier transform of

both functions remains relatively large at frequencies around six

to nine radians per second. This is undoubtedly due to the fast
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rate of variations of the functions. It is likely that such

functions can be controlled by reducing the high frequency specifi-

cation. A reduction at high frequency will not be made on the

frequency domain specification which has been chosen, but careful

attention will be paid as to whether or not such error functions

become present in the design of the example.

To summarize, the frequency domain specification which is

shown in Figure 4.17 has been chosen as a counterpart to the time

domain specification shown in Figure 4.7. The selection was based

on a small but what is felt to be a representative sampling of error

functions. It was also pointed out that an error function satisfy-

ing the frequency domain specification will not necessarily satisfy

time domain specifications as shown in Figure 4.15; however, such

instances would have to be due to some form of time delay within the

system or a slowly settling component within the system. In such

instances the particular portion of the system which is causing the

difficulty would have to be examined separately to see if it can be

eliminated or its effect reduced to an acceptable level.

The frequency domain specifications used in the second design

procedure must now be determined. These specifications have been

assumed to be given in the form

kl(w) _< C(j);l < k2(W)

(4-4)

61(w) < Arg [C(jW) l < 02(X)

ICo(J )
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In order to compare the two design procedures, it will be desirable

to have the specifications as given in Inequality (4-4) to be

equivalent to the specifications shown in Figure 4.17. Such an

equivalence is easily established if the two sets of specifications

are properly interpreted. Note that the specifications given in

Inequality (4-4) define a region in the complex plane which is

illustrated in Figure 4.18.

1(W)

Re

Figure 4.18

Region Defined by Second Form of
Frequency Domain Specifications

Also observe that the specification given in Figure 4.17 defines a

region in the complex plane. This region is shown in Figure 4.19.
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Im

Re

Figure 4.19
Region Defined by First Form of
Frequency Domain Specifications

It is evident that since the regions shown in Figure 4.18 and 4.19

are basically different, one region can only be an approximation to

the other. However, the procedure for using the specification given

in Inequality (4-4) is a graphical procedure and the region shown in

Figure 4.19 can be used as satisfactorily as the region shown in

Figure 4.18. Thus, the specifications used in the second design

procedure will be the regions defined by the frequency domain

specification given in Figure 4.17 and illustrated in Figure 4.19 in

place of the region shown in Figure 4.18.

4.4 First Design

In design procedures number one and two, the first design is a

starting point from which a final design is reached. In the

previous chapter the methods of obtaining a first design assumed

that the time variations were known as an explicit function in order

that the necessary integrals could be evaluated. In the example
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given in this chapter the time variations are not assumed known as

an explicit function, so that some other method of determining the

first design must be used rather than that previously given. It

would be possible to assume any stable compensation as the starting

design; however, not only may this lead to an excessive number of

designs in the procedure, but such an indiscriminate approach does

not lend itself to an orderly study of time-varying systems. The

most logical starting design would be one based on a time-invariant

system with plant ignorance. Since the plant is time-invariant,

such a design can be made analytically; and, in addition, the

effects of the time variations on the system can be directly

observed while the additional feedback required to compensate for

these time variations is clearly evident.

The first step in the time invariant design is to find the

acceptable regions in the complex plane for H(jw). However,

instead of determining the acceptable regions of H(jw) what will

actually be found are the acceptable regions for

-Lo(jw) = -H(jw)Po(jw) where PO(jw) is the nominal plant. In

designing the time invariant system one should bear in mind that

the design equations for both design procedure one and two stem

from the same basic equation. The difference in the two procedures

is that procedure one bases the design upon the difference in the

actual system output and the desired system output, while procedure

two bases the design upon the ratio of the actual system output to

the desired system output. Since the specifications found in the

previous section for the two procedures are exactly equivalent,
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the acceptable regions for -Lo(jw) found by either procedure one

or two will be identical. For illustration purposes the acceptable

regions will be found using both procedure one and two.

The acceptable regions for -Lo(jw) will first be obtained for

design procedure one. The design equation for design procedure

one is given as

E(jw) 1 AP
-

(jw,jy)C(jy)dy.
-Since the system is assumed time invariant, the design equation can

Since the system is assumed time invariant, the design equation can

be written

E(j), - [P-l(jw) - P,'l(jw)] C (iw) + E(jw)]

P -l(jw) + H(jw)

Solving for E(jw) and rearranging one can obtain

1 '1

I1(j) C(j). (4-5)
-(j) -+ H(jw)

In selecting the nominal plant, observe that IE(jwl may be reduced

by either increasing the magnitude of the denominator of Equation

(4-5) or by decreasing the magnitude of its numerator. It is the

design objective, of course, to increase the magnitude of the

denominator no more than necessary while maintaining as small a

value of IH(jw)I as possible. Thus, Po(jw) should be selected such

that the magnitude of the numerator will be reduced to as small a

value as possible. The inverse plant is given by
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1 jw(j3 + 2)
P(ji) = k

where 1 < k < 10

and the inverse nominal plant is given by

1 = jw(jw + 2) .
Po(jW) ko

The expression for

becomes

the magnitude of the numerator of Equation (4-5)

I1_ 1 _1 j(jw + 2) j-(jm + 2)

Po(j) - P(jW) - ko k

|ko k jw(jw + 2)

For any X the maximum value of this expression will be minimized

for all k when l/ko is given by

1. 1
k1o kmin + kmax
k 2

= 1.1 = 0.55
1 2

or ko = 1.818,

Thus, the nominal plant is selected as

1.818
Po(jW) = jw(jw + 2)

The regions of acceptable -Lo(jw) can now be found. Rearrang-

ing Equation (4-5) as shown on the following page
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Po(j w)
-(jw)

E(j ) = po(j )

p (j ) - 1 + 1 + H(ji)Po(jw)

an write

E(jW) = - Q(jC)
Q(j w) + Lo(ji) C

Co(j W)

(4-6)

where

Po (j w)
Q(jw) = p (jo) - 1

and

Lo(jW) = H(jw)Po(jw) + 1 = Lo(jW) + 1.

Applying the specifications to Equation (4-6), one obtains the

inequality

I Q(j) 
I CO(jW) I I Q(jW) + LO(j )l I M(W)

or

I Q(jw) + Lo(jW)I > I Q(jw)I I co(j) l
M(@)

At any specific frequency X the function Q(jw) takes on a range of

possible values in the complex plane depending upon the plant P(jW).

For each value of Q(jw) the right hand term of Inequality (4-7)

takes on a specific value which then specifies a forbidden region

135

(4-7)
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for -Lo(jw). Determining the forbidden regions for all values of

Q(jw) then determines the forbidden region of -Lo(jw) at frequency

w. The compliment of the forbidden region automatically gives the

acceptable region of -Lo(jw). To illustrate the procedure, the

acceptable region for -Lo(jw) at X equal to two will be found.

The range of Q(jw) must first be determined. The expression for

Q(jw) is given by

Q(ji)= Po() - 1
P (iw)

= 1.818 jw(jw + 2) _ 1
jm(jw + 2) k

= 1.818

k

Since the constant k takes on all values between one and ten,

Q(jw) takes on all real values between -0.818 and 0.818. From

Figure 4.17 the value of M(2) is found to be 0.4 and the value of

ICo (j2) is calculated as 0.352. Table 4-1 gives the values of

the right side of Inequality (4-7) for different values of Q(jw)

at w equal to 2.

IQ(J ) l. ICo(jw)l
Q M(@)

-0.818 0.731
-0.5 0.446
-0.2 0.179
'0 0
0.2 0.179
0.5 0.446
0.818 0.731

Table 4-1
Values of the Right Side of Inequality (4-7)
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To determine the forbidden region of -Lo(jW) for a particular Q,

consider the value of Q equal to -0o818. At this value of Q one

finds from Table 4-1 that the magnitude of Q(jw) + Lo(jw) must be

greater than or equal to 0.731. The region where this is true is

illustrated graphically in Figure 4°20. The distance from Q to

-Lo is the magnitude of Q + Lo, so that the forbidden region of

-Lo for Q equal to -0.818 corresponds to the region inside a

circle with center at -0.818 and radius 0.731.

Im

Q + Lo

-. 818 Re

Locus of Points
Corresponding to
IQ + Lol Constant

Figure 4.20

Illustration Showing the Determination of
Acceptable Region of -Lo(j)

Repeating this procedure for several values of Q, one is able to

determine the forbidden regions corresponding to each value which,

when superimposed upon one another, gives the total forbidden
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region. The acceptable region is then the region outside the

forbidden region. Figure 4.21 shows the total acceptable region

of -Lo for w equal to 2.

f Im

4=.818

Q=.

1

Figure 4.21
Acceptable Region of -Lo for w = 2

Having the acceptable regions of -Lo, it is a simple matter to

determine the acceptable region of -Lo. Since Lo is given by

Lo = 1 + Lo,

then

-Lo = 1 - Lo.

Thus by adding one to each point in the acceptable region of -Lo,

the acceptable region of -Lo is obtained. This corresponds to a

shifting of the acceptable regions of -Lo to the right by one to

obtain the acceptable regions of -Lo.

Q=-.818
4=-.5
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The frequencies of interest for which the acceptable regions

are to be found for the example must now be selected. In calcu-

lating the Fourier transform on the computer, the frequencies

which may be calculated are multiples of the fundamental frequency

given by

27t

T

where T is the total system time of the calculation. It will be

assumed that the system will be close to steady state in ten

seconds so that T is taken as ten seconds. If, in practice the

system does not reach steady state in ten seconds, T can be

doubled or quadrupled until steady state is reached and the

appropriate harmonic selected. With T equal to ten seconds, wo

is equal to 0.628. The multiples of this frequency which were

chosen are 0, 1, 2, 3, 7, 10 and 15. This selection gives fre-

quencies fairly equally spaced on a Bode plot and should also

give adequate representation of the functions of interest. The

frequencies corresponding to these multiples are 0, 0.628, 1.25,

1.88, 4.39, 6.28, and 9.42. The acceptable regions of -Lo(jm)

which correspond to these frequencies are shown in Figure 4.22.

An acceptable region for w = 0 cannot be found since Lo(jw) is

indeterminate at w - 0. If it is found that the error is too

large at w = 0, a correction will be made in the second design.

The reduction of the magnitude of Lo(jW) is not as critical at low

frequencies as it is at high frequencies since at low frequencies

the loop gain is adequate to limit the noise transmission to the

plant input.
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The acceptable regions for -Lo(jw) will now be found for

design procedure two. The design equation for design procedure

two is given by

C(jW) =
Co (j i))

1 + Lo(j i)

Po (J ) )P + Lo(j w)
P(jL))

The nominal plant is chosen the same as was selected for design

procedure one.

Po(jw) = 1.818
jw(jw + 2)

Since the system is assumed to be time-invariant, the equivalent

plant is given by

Peq(j ) = k1eq, j wo(j w + 2)

where

1 < k < 10.

The ratio of the nominal plant to the

found to be

Po (j ) =
Peq (i W)

1.818
j w(j w + 2)

k
jw(jw + 2)

equivalent plant is thus

= 1.818
k

so that the design equation becomes

C (j W) 1 + LO (jWo )

Co(j w) 1.818 L
k Lo(j()

(4-8)
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The objective is to chose an Lo(jW) such that the value of

C(jW)/Co(jw) as given by Equation (4-8) falls within the

(28)
appropriate specification regions for all values of k.

As discussed in the previous section, one form of the

specification region is a circle in the complex plane of radius

M(W) and centered.at the point Co(jW). The specifications will

be satisfied if (C(jw) falls within this region. Dividing every

point in the region by Co(jW), one obtains a region into which

C(jw)/Co(jw) must fall for the specification to be satisfied.

This region consists of a circle centered at the point one with

radius M(W)/fCo(j) I. As with design procedure one, the frequen-

cies of interest are selected as 0, 0.628, 1.25, 1.88, 4.39, 6.28,

and 9.42. The regions of acceptable C(jw)/Co(jw) for these

frequencies are shown in Figure 4.23.

The regions shown in Figure 4.23 are still not in the most

convenient form for determining the acceptable region of -Lo(jw),

however. To determine the appropriate form, consider Figure 4.24.

as shown on page 144.

Shown in Figure 4.24 is a hypothetical region of Po/Peq and

a line ' passing through the point one. To determine whether or

not any point A on the line a lies within the acceptable region of

-Lo, one draws the vector from point A to one which is equal to

1 + Lo. A vector from A to any point within the regions of Po/Peq

gives Po/Peq + Lo. These two vectors give the numerator and

denominator of Equation (4-8) so that C/Co can be determined. If

C/Co as determined by Equation (4-8) falls within the acceptable
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Im

-Lo

/I / o leq

/ 1'~.~,~ Re

! 'Region of Po/Peq

Figure 4.24
Determining a Point on the Boundary of the

Acceptable Region for -L0 (jW)

region of C/Co for all the points within the region of Po/Peq,

point A then falls within the acceptable region of -Lo. Point A

lies on the boundary of:the acceptable region of -Lo if C/Co just

falls within the acceptable region of C/Co for all Po/Peq. The

object is to determine the boundary points for a number of lines

passing through the point one. These boundary points then

determine the region of acceptable -Lo .

The determination of the boundary points by the procedure

just described is a trial and error method and can become fairly

lengthy. However, if the specification region for C/Co were

modified so that the numerator appears to be a constant and the

denominator a variable, which corresponds to the form of Equation

(4-8), the determination of the boundary of acceptable -Lo becomes



145

a simpler matter. To illustrate, Figure 4.25 shows the region

of Po/Peq, and superimposed is an assumed modified region of C/Co.

Im /

II

Modified Region

Re

V J/ ~Region of Po/Peq

Figure 4.25

Illustration of the Use of the Modified
Region of C/Co

The point one is common to both regions and the vector from

point A to one which is 1 + Lo also corresponds to C. Observe

that if point A is moved away from one along line a, the region

of C/Co becomes proportionally larger while retaining the same
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Re

Acceptable Forbidden
Region Region

ImIIm 0

Figure 4.27a
Modified Region of C(jw)/Co(jw): w = 0.628



Re

Forbidden'

Region

Figure 4.27b
Modified Region of C(jw)/Co(jw): w = 1.25
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Acceptable
Region

1

Figure 4.27c
Modified Region of C(jw)/Co(jw): w = 1.88

Im



Re

1

Acceptable
Region

Forb idden
Region

Figure 4.27d
Modified Region of C(jw)/Co(jw): w = 4.39
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Im



Re

1

Acceptable
Region

Forbidden
Region

Figure 4.27e
Modified Region of C(jw)/Co(jw): X = 6.28
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j

Re

L1

Acceptable
Region

Forbidden
Region

Figure 4.27f
Modified Region of C(jw)/Co(jw): w = 9.42
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\ Point on Boundary
of -Lo

Figure 4.28
Determination of a Point on the Boundary

of the Region of Acceptable -Lo(jw): X = 1.25
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of acceptable -Lo(jw) ). The acceptable regions of -Lo(jw)

obtained by this method are identical to the regions obtained for

design procedure one which are shown in Figure 4.22. Figures 4.27a

through 4.27f show the modified regions which correspond to the

specification regions given in Figure 4.23.

Since the acceptable regions of -Lo(jW) are known, a suitable

Lo(jw) can now be designed for the time-invariant system. It is

desired to have -Lo(jw) just lie on the boundaries of acceptable

-Lo at the point where the distance to the origin is a minimum.

For the acceptable regions shown in Figure 4.22, the points closest

to the origin lie on the negative real axis. However, for the

magnitude of Lo(jw) to decrease there must be some degree of lag

associated with Lo(jW). Thus, the design of Lo will be a

compromise between maintaining as small a magnitude as possible

while obtaining the necessary rate of decrease. The design of

Lo(jw) was made by trial and error. A preliminary design was

first made using the Bode plot, then the final design was reached

by adjusting the preliminary design so that the polar plot of

-Lo(jm) came as close as possible to lying on the boundaries of

the acceptable regions of -Lo(jw). The expression for the Lo(s)

which was selected is

Lo(s) = 24.17 (s + 0.9) (s + 6)
s(s + 1.4) (s + 7) (s + 12)

and has a polar plot as shown in Figure 4.29. The expression of

H(s) is easily found from the relation
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Im

Lo(i)

= 1.88

w = 4.39
/ I

= 6.28

jX = 9.42

Figure 4.29
Polar Plot of Time Invariant Design
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Lo (s)
H(s) =

Po (S)

and is found to be

H(s) = 13.3 s + 8.9s2 + 19.2s + 10.8

s3 + 20.4s2 + 110.6s + 117.6

Generally, the number of poles over zeroes will be greater than in

the above Lo(s) and H(s). The high frequency poles were not

included in order to keep the solution time for the computer

simulations as short as possible. The high frequency poles will

be added after a suitable time-varying design has been made.

The prefilter G(s) is determined from the expression

G(s) = 1 + Lo(s) To(s)

Po(s)

Making the appropriate substitutions one obtains

G(s) = 2.2 s5 + 2 2 .4s4 + 175.6s3 + 553.9s2 + 6 99.3s + 261.1

s5 + 23.2s4 + 171.7s3 + 508.9s2 + 771.7s + 470.4

Note that the far off poles of Lo(s) will also be in G(s); however,

the far off poles in G(s) are not necessary as they are in L(s).

In fact, the far off poles of G(s) can be assumed to be in To(s).

This will give a simplier expression for G(s) and will result in

little change in the system response.

To determine whether or not the design is adequate for the

system under time-varying conditions, a simulation was made on an
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IBM 1130 digital computer using the Continuous System Modeling

Program for the 1130 in conjunction with the algorithm for

calculating the numerical Fourier transform as given in Reference

(48). A more detailed discussion of the simulation procedure is

given in Appendix D.

The results of the search for the maximum value of the error

will first be presented. A series of runs was made with the

function representing the time-varying gain having the general

form as shown in Figure 4.30. The function has 11 equally spaced

points starting from time equal zero to nine seconds. The points

can take on any value between one and ten with the function

varying linearly between points. Thus, the maximum slope for the

function is ten except at the selected points.

10

,,1i i ~ , , ~ , t I I i l ,
0 .1T .2T .3T .4T .5T .6T .7T .8T .9T T t

Figure 4.30
Type of Function for Time-Varying Gain

In searching for the function which would give the maximum error,

it was quickly found that the larger errors occur when the
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specified points take on either maximum or minimum values. The

variations having the greatest effect on the error occur near time

equal zero, and any variation after five or six seconds has little

effect on the error. By far the largest error occurs when the

time variations start at ten and decrease quickly to one. In

fact, variations starting at values other than near ten produce

errors no larger than those observed when the gain is held

constant at ten, no matter what the subsequent variation.

It was found that a significant increase in error occurred

only at frequencies zero and 0.628, while the design appeared to

be adequate for all higher frequencies. Figures 4.32 and 4.33

show the step responses and error functions corresponding to

these maximum errors. Figure 4.37 shows the magnitude of the

Fourier transform of these error functions. Note that the error

functions in both cases increase quickly, then slowly decrease to

the final value with the result of an excess areaunder the curve.

What apparently happens in the system during these particular

time-variations is that when the gain starts at ten, the system

has the ability to accelerate quickly to a relatively high

velocity; however, after the system has attained the velocity the

gain is suddenly reduced to one, so that the rapid acceleration

effect is lost, thus allowing the system to coast to a higher

value than would be the case if the gain remained at ten. With

the gain at the lower value, the system returns to the final

value more slowly than if the gain were at ten. The effect is

also observed in Figure 4.33 when the system decreases to zero
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more quickly after four seconds as a result of an increase in

gain between four and five seconds.

In an effort to observe the effect of an increase in slope on

the error, a second series of time-varying runs was made with the

same time-varying gain as shown in Figure 4.30, except the

variations are completed in 4.5 seconds instead of nine seconds,

thus increasing the maximum gain from ten to 20. A slight increase

in the error at the two frequencies zero and 0.628 was observed;

but, again, the design proved to be adequate for the higher

frequencies. Figure 4.34 shows the variations causing the maximum

error at the two frequencies and Figures 4.35 and 4.36 show the

corresponding step responses and error functions. The magnitude

of the Fourier transforms of the error functions is shown in

Figure 4.37. Note the close similarity of these functions to

those shown in Figure 4.31 through 4.33.

A final effort was made to cause errors at the higher fre-

quencies by having the time-varying gain make discrete jumps

between the values at each of the 11 points instead of varying

linearly between points. Only negligibly higher values of error

were observed, however, over those obtained in the second series

of runs.

It is felt that an excellent representation of possible time-

variations were obtained in these runs. A number of preliminary

runs were first made and analyzed to determine the types of

variations causing the larger errors. It was these preliminary

runs that showed the larger errors to occur when the specified
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iEr

\ pecification

Maximum Error of Second
Series of Time Variations

Maximum Error of First Series
of Time Variations

Largest
Time-invariant
Error

I I I I I ;

0 1 2 3 4 5 w

Figure 4.37
Maximum Error Due to Time Variations
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points of the function take on either the maximum or minimum

values and that the largest errors occur when the function started

at ten and quickly decreased to one. Special functions such as

oscillations of various frequencies and step functions were then

selected and run. Finally, a large number of functions were

selected at random to help insure that-some possible variation

resulting in larger errors had not been overlooked. None of the

errors due to these special or random selections, however, caused

errors larger than those observed in the preliminary runs. In

all, more than five hundred functions were run requiring approxi-

mately 70 hours of computer time on the IBM 1130.

The determination of the regions of Po/Peq for X = 6.28 will

now be discussed. In reality, the determination of the regions

of Po/Peq were carried out simultaneously with the search for the

maximum E I since both Po/Peq and I E I were calculated for

each function. The procedure for determining the region of

Po/Peq was to plot the values of Po/Peq for each time-varying

function from which the general outline of the region could be

observed. It must be recognized that the procedure is not exact

but, nonetheless, yields useable results. Because of the rela-

tively large number and wide diversity of functions which were

run, it is felt that a reasonably good representation of the

regions of Po/Peq was obtained. The regions are shown in Figures

4.38 through 4.43, along with the specification regions of

acceptable Po/Peq for the Lo of the design. The only frequency

at which the specifications are not met is 0.628, which is in

agreement with the results obtained in the maximum IEl

C.Y
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determination.

The regions of Po/Peq for frequencies 0.628, 1.25, 1.88, and

9.43 are well concentrated about the region of Po/Peq corresponding

to the time-invariant case. This concentration is similar to the

observations made in the previous chapter and is no surprise;

however, the regions of Po/Peq for frequencies 4.39 and 6.28 do

not show this concentration which was an unexpected result.

The region of Po/Peq for 6.28 is especially interesting since

it extends into the left half of the complex plane and a good

distance into the lower half plane. In fact, points were found

as low as -j6. However, such large magnitudes of Po/Peq are not

unacceptable as is seen in Figure 4.42. Note what large values of

Po/Peq imply about the system output C(jW). Since Po is a constant,

Po/Peq becomes large only if Peq becomes small. Since Peq is

defined as the plant output divided by the plant input, Peq becomes

small only if the time-varying plant does not effectively transfer

the signal at the frequency of interest. In other words, Po/Peq

will be large if the frequency content of the output is small

while that of the input is not so small. In the example the

frequency content of the output at 6.28 cannot only be small or

even zero, but can actually be at some finite magnitude 1800 out

of phase with the desired plant output, thus allowing portions of

Po/Peq to lie in the left half plane.

Figures 4.38 through 4.43 clearly illustrate why the design

is satisfactory for the time-varying gain at frequencies of 1.25

and above. The time-variations do have a significant effect on
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the system as shown by the increased size of the region of Po/Peq.

However, when the specification region of acceptable Po/Peq is

made large enough to enclose the region of Po/Peq for the time-

invariant system, it also encloses a great deal of additional

area which is large enough to allow for the increased size of the

region of Po/Peq in the time-varying system. That is, the design

is not only acceptable for the range of Po/Peq in the time

invariant system, but it is also large enough to accept the much

larger region of Po/Peq in the time-varying system. It is

speculated that if the region of Po/Peq for the time-invariant

system came closer to filling the specification region of Po/Peq

such as would occur if a plant pole could take on a range of

values, the region of Po/Peq for the time-varying system would

not be able to lie entirely within the acceptable region of Po/Peq.

It is also of interest to observe some of the step responses

and error functions of the system for time-variations other than

those resulting in the maximum value of IEI. Seven typical step

responses with their corresponding time-variations and error

functions are shown in Figures 4.44 through 4.50. The time

duration of the randomly selected error functions was placed at

seven seconds since, as has been previously observed, faster

time variations and variations after seven seconds have little

effect on the error. The step responses are well behaved despite

the time-varying gain. The maximum overshoot appears to be not

over 30% and the settling time of the function is not over seven

or eight seconds in the worst case. Although fast rise time is
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usually not considered an undesirable property, it is fast rise

time that is responsible for the large values of the error func-

tions shown in Figures 4.44, 4.46, and 4.49. The time-varying

gain in the responses having large values of error start at or

near ten, while functions starting at or near one such as shown in

Figures 4.45, 4.48, and 4.50 result in step responses having

little or no overshoot with a relatively slow rise time and thus

smaller values of error. It is evident from these figures that

the form of the step response and thus the error function is

highly dependent upon the starting value of the time-varying gain

and is less sensitive to subsequent variations. This basically

is the same observation made earlier in the determination of the

maximum value of IEI.

Since the time-invariant system design is unsatisfactory for.

the system under time-varying conditions, a second design must be

made. The second design will first be made using design procedure

one.

4.5 Second Design: Procedure One

Equations (3-28) are the design equations for the subsequent

designs required in procedure one. The design equations can be

written as

omn 11 + Lo 1 + L+ L for Eom M (4-9a)
M

I 1 + Lo < 1 + L o for Eom < M (4-9b)

where M is the frequency domain specification, Eom is the maximum
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error of the previous design, Lo is the compensation of the

previous design and L'
o

is the compensation to be designed.

The minimum values of I1 + L'o are now found from Inequali-

ties (4-9). At zero frequency the magnitude of L'o is infinite

so that Inequalities (4-9) cannot be applied. However, dividing

Inequality (4-9a) by Po and setting w equal to zero one obtains

Eom
om JH(o)I < IH'(o)IM

which sets a minimum value on [H'(o)I. Table 4-2 gives a

summary of the specification M, the values of 1 + Lol and the

corresponding Eom of the previous design, and the minimum values

of I1 + L'oI for the frequencies of interest.

1I + Lo|

IH(o)i = 1.22

2.34

1.613

1.34

1.01

0.95

0.93

Minil + L'o1

H'-(o) >_ 1.43

2.91

1.72

1.34

1.01

0.95

0.93

Table 4-2
Summary of Specifications

o

0

0.628

1.25

1.88

4.39

6.28

9.41

M

1.13

0.65

0.51

0.42

0.11

0.05

0.05

Eom

1.32

0.808

0.543

0.42

0.11

0.05

0.23
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The minimum values of II + L'ol correspond to regions in the

complex plane of acceptable -L' o . These regions are found to lie

outside circles about the point one with radius equal to the

minimum value of I1 + L'oI.

The regions of acceptable -L'
o
corresponding to the values

given in Table 4-2 are shown in Figure 4.51 together with the

regions of acceptable -Lo for the time-invariant system. A

shortcoming of design procedure one is now evident. Since the

region of unacceptable -L'o is assumed to be a circle centered

about the point one, it is possible to exclude -L'o from large

areas in the complex plane which would actually be acceptable,

thus resulting in an overdesigned system. This will be especially

true at high frequency where a small increase in the radius of the

circle results in a much larger required increase in |L'o1.

Unfortunately, it is at these higher frequencies that IL'ol must

be decreased to as small a value as possible in order to limit

the noise transmission to the plant input. For example, consider

the regions corresponding to w equal 6.28. If the boundary of

acceptable -Lo for the time-invariant system were not known, the

boundary of acceptable -L'
o
allows IL'ol to become as small as can

be designed. Such a design could not satisfy even the time-

invariant system, much less the time-varying system, so that the

radius of the region would have to be increased which 'would

demand a much larger increase in IL'ol than would really be

required.

It was decided to design -L o so that it would lie within the
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acceptable region of -L'o at w equal 0.628 but would lie approxi-

mately half way between the boundaries for -Lo and -L'o at w

equal to 1.25 and 1.88. At w equal to 4.39, 6.28, and 9.42 only

the acceptable regions of -Lo would be considered. The reason for

this is that the specifications were basically satisfied with L
o

except at w = 0.628 while a design based solely on the acceptable

region of -L'o would result in an underdesign at the higher

frequencies. The design which was chosen has an L'o(s) given by

L'o(s) = 26.88 (s + 2.2) (s + 5.8)
s(s + 2) (s + 7) (s + 14)

The polar plot of -L'o is shown in Figure 4.51. The corresponding

H(s) is given by

H(s) = 14.78 s3 + l0s2 + 28.76s + 25.52

s3 + 23s2 + 140s + 196

and G(s) is found to be

G(s) = 2.2 s5 + 25s4 + 212.88s3 + 744.8s2 + 1165.07s + 685.98

s5 + 25.8s4 + 208.4s3 + 680s2 + 1108.8s + 784

The higher frequency poles in L'O(s) and H(s) will be added in

the final design. The above H(s) satisfies the specification on

H'(o) given in Table 4-2. More lag is required in L'o than in

Lo because of the higher rate of decrease required between the

frequencies 0.628 and 1.25.

A comment should be made concerning stability. Since the

example has only a time-varying gain, sufficient conditions for
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stability are known. A convenient criterion is the circle cri-

terion which is given in Reference (38). The system of this

example will be stable if the polar plot of -L'o does not lie

within or enclose a circle of radius 0.8181 and centered at point

one. The above design satisfies this criterion so that the

system is assured to be stable.

The new design was tested by simulating the system and

determining the maximum magnitude of error. The duration of the

time-varying gain as illustrated in Figure 4.30 was set at seven

seconds. Since L'
o

is similar to Lo, faster variations should

have little effect on the magnitude of the error as well as

variations after seven seconds. As with the first design, it was

found that the larger errors occurred for variations that start at

ten and decrease quickly to one and that variations starting at

values other than near ten produced errors no larger than those

observed with the gain held constant at ten. It was also verified

that variations occurring after five or six seconds have little

effect on the error.

A plot of the maximum error corresponding to this design is

shown in Figure 4.52 along with the specification envelope and the

maximum error corresponding to the first design. An important

observation is that the increase in I1 + L 0'o at a particular

frequency appears to have substantially affected the maximum

error only in the vicinity of that frequency. For example, an

increase of IL'ol at 0.628 did not cause an increase in IEl at

1.88 as could have occurred in a time-varying system since the
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frequencies are not independent. As was suspected, the system is

overdesigned; that is, IE| is considerably smaller than the

specifications in the low frequency region.

The time variations resulting in the maximum error at X = 0

and X = 0.628 are shown in Figures 4.53 and 4.54, respectively,

with the corresponding step response and error function. Note

that these variations are almost identical to the time variations

found for the first design shown in Figures 4.31 and 4.34. The

step responses and error functions in the second design are also

similar to those in the first design. In the second design,

however, the peak overshoot is reduced to 19% from 32% in the

first design. The settling time in the second design has also

been significantly reduced.

Although the design satisfies the frequency domain specifica-

tion, the error function does not fall within the time domain

specification envelope. Nevertheless, the step response is well

behaved and would undoubtedly be considered acceptable. In

reality, the time domain specification envelope should probably

have been chosen to allow larger errors in the range 0 to 1

second since fast rise time is generally not considered an

undesirable property in a system. To give an indication of the

step response for other variations, variations are shown in

Figures 4.55 and 4,56 with their corresponding step responses

and error functions.



192

~J~~~~~~~c

II

0

-0

M

I~~~~ 0

o
/~~~~~

w ~ ~ ~ w

0~~~~

4 ·~~~~~~~~~~~~ rd~~~~~ -

H / c

~Q) ~U

I ~

o Ib

~~~~~~~~~~~~~~~~~~~0

4-a /

4-J

~~~~1 do~~~~~~~~~c

U a) ~~~~~·-I a)

O m ~~~~~bO a)

-HOQ

0~~~~~

I , E a)

(d crQ~~~~~~~~~-4-

(n 0 F

I4 -"

Cii~o ~ ; l , ,r

C')r I~c

En ~ ~ ~ ~ ~ ~ ~ ~ ~ o

0 M~~~~~ * -

a) ~ ~ ~ ~ ~ ~ ~ ~ ~ l

U) 0~I-t al

N 3~0

a 4

4-i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-

co a

C-) 1~ I 

o Le
1-4

--4



193

I .> I II
I .I

I
-.

w 0

/ I I o

)/ o I D

0

U,

a * I ' II

..H 

4-J

rX4I ~ vlC

Lf ~ ~ ~ ~ ~ c, bOO r

U~~~ r~

o

a)

onVo

a)

a) U
4-J
03 Ca



Oro

/
/

a)
(n

or.m0

a) uil
uWa4-J )

/
I

I

a)

0~ 

aJ0
U)0a) c_

Clnaw I
(V 10

X W

u a IU) U

t
r14

o

194

o

C)

o,4-

.,

C.)
cI

I

LUI

.j

0
L) -H

. 3

EHr

a)

I

0

I J
cJ

o

a)

0

{/]

o{

C-;

~JJ
a)
.,

0

O
C)

0:

4

II
I
I

I

I

I
I

I
I
I
I
I
I
I
I
I

-4



195

a)
(rn0)CJ

To0

Pa4

a) p

V) 0

I,

IU 0o

.H

-,0

a o 

40 r L

f co

,a 09

0)

EO

U) 'rl

a)

0
u

c(

Un

0
PL

0
-4

Irl

0o

w
0
>

a)
en

0

a)
a,

I
I
I
/
I
I
/
I



196

4.6 Second Design: Procedure Two

In design procedure two the approach is simply to use the

regions of Po/Peq from the first design to determine regions of

acceptable -L'o for the second design. The regions of Po/Peq

for the first design are shown in Figures 4.38 through 4.43,

and the specification regions are given in Figures 4.27a through

4.27f. Using techniques previously described in the first design,

the acceptable regions of -Lo are determined as shown in Figure

4.57. Except at the frequency 0.628, the acceptable regions of

-L'o do not require the magnitude of -L'o to be substantially

greater than was required in the first design. This is expected

since the first design satisfied the specifications at frequencies

1.25 and higher.

A design satisfying the specification regions was made by trial

and error and the resulting L'o(s) is given by

L'o(s) = 25.55 s + 5
s(s + 7) (s + 12)

The polar plot of L-o is shown in Figure 4.57. The design

satisfies the circle criterion for stability which is given in

Reference (38) so that system stability is assured. The corre-

sponding expression for H(s) is

H(s) = 15.15 s2 + 7s + 10

s2 + 19s + 84

and the expression for G(s) is

s4 + 21s3 + 149.55s2 + 36 0.86s + 275.52
G(s) = 2.2

s4 + 21.8s3 + 141.2s2 + 311.2s + 336
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The high frequency poles will be added in the final design. This

design requires more lag than the first design because of the

higher rate of decrease between the frequencies 0.628 and 1.25.

It should be pointed out that the magnitude of E is somewhat

smaller in this design than in the second design using procedure

one. The design was tested by simulating the system and determ-

ing the regions of Po/Peq. The duration of the time-varying gain

illustrated in Figure 4.30 was again set at seven seconds.

Simulations were run for over two hundred variations with the

variations being both specifically selected and chosen at random.

The resulting regions of Po/Peq are shown in Figure 4.58 through

4.63, along with the acceptable regions of Po/Peq corresponding

to L
o
,. The regions of Po/Peq fall within the acceptable regions

of Po/Peq which means that the design satisfies the specifications.

However, since the regions of Po/Peq do not touch the boundaries

of acceptable Po/Peq at all frequencies, the system is overdesigned

although the overdesign is not appreciable.

Observe that the regions of Po/Peq for this second design are

almost identical to the regions of Po/Peq found for the first

design. This result is extremely promising for design procedure

two since, for this example at least, the regions of Po/Peq do not

change appreciably for changes in Lo . Thus, designing an Lo

based upon regions of Po/Peq corresponding to a previous design

does not appear to be an unreasonable approach.

To give an indication of the type of step responses which

this time-varying system exhibits, a number of step responses with
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the corresponding error functions and time-variations are shown

in Figures 4.64 through 4.71. For comparison, the first two

responses correspond to time-invariant conditions with the gain

set at ten and one, respectively. As with the earlier designs,

the time-variations cause an increase in overshoot and settling

time. The maximum overshoot in the time-varying case is approxi-

mately 24%, which is an increase over the 19% observed for the

second design using procedure one and a decrease over the 32%

observed for the first design. Such a result is expected since

the magnitude of L'o for this design is smaller than the magnitude

of L'o in the second design using procedure one and is larger

than the magnitude of L'o in the first design.

4.7 Third Design

In making the second design it was found that a design based

on procedure one, which is the technique using the maximum IEl,

will generally result in an overdesigned system because the

acceptable regions of -Lo are assumed to be circular. Use of the

second procedure, which is based on the regions of Po/Peq, results

in the more accurate shape of the acceptable region of -Lo;

however, the size of the acceptable region cannot be as precisely

determined as can be done by the method in procedure one. The

third design will be based on a combination of procedures one and

two. The shape of the acceptable regions of -Lo will be assumed

to be as was found in the second design using procedure two, while

the size will be determined from the maximum error.

The maximum error magnitude was found for the second design
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based on procedure two and is shown in Figure 4.72. Also shown in

Figure 4.72 are the maximum error magnitudes for the second design

based on procedure one and the maximum error magnitudes for the

first design. The first design is not satisfactory, while both

of the second designs result in an overdesigned system. However,

in the second design based on procedure two the magnitude of L
o

needs to be decreased only a small amount at the frequencies 0.628,

1.23 and 1.88 for the error to just lie on the specification

curve. To determine the amount of decrease needed at X = 0.628,

it will be assumed that the magnitude of the error varies linearly

with the magnitude of Lo between the first design and the second

design based on procedure two. The difference in the magnitude

of the error of the second design can be increased by .025 which

is a 16% change based on the 0.156 difference. The acceptable

region of -Lo at w = 0.628 for the third design is then determined

as follows.

Figure 4.73 shows a plot of the acceptable region of -Lo at

0.628 for the first design and for the second design based on

procedure two in the area of interest. The magnitude of Lo for

the first design at 0.628 is 2.02 and for the second design is

2.61. The difference in the two magnitudes is 0.59. The

boundary of -Lo at w equal 0.628 for the third design will be

placed at 16% of the difference between these two magnitudes as

shown in Figure 4.73.

At w equal 1.25 the magnitude of acceptable -L
o
needs to be

changed only a little; thus, -L
o

for the third design will be
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Figure 4.72
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First and Second Designs
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chosen to fall approximately half way between the magnitudes of -L o

for the first design and -L o for the second design based on

procedure two. At the frequencies 1.88 and higher the magnitude

of -L o will be chosen the same as the magnitude of -Lo of the

first design since in the first design the specifications are

just met at these frequencies. The resulting acceptable regions

of -L o for the third design are shown in Figure 4.73.

The polar plot of the third design is shown in Figure 4.73

together with the acceptable regions of -Lo. The expression for

Lo(s) of the third design is

Lo(s) = 24.61 s + 5
s(s + 8) (s + 10)

This design satisfies the circle stability criterion so that

system stability is assured. The corresponding expression for

H(s) is

H(s) = 13.54 s2 + 7s + 10
s 2 + 18s + 80

and for G(s) is

G(s) = 2.2 s 4 + 20s3 + 140.6s2 + 332.3s + 246.1

s 4 + 20.8s3 + 134.4s2 + 296s + 320

The high frequency poles will be added in the final design. Note

that this design is very similar to the second design based on

procedure two. The major difference is the small reduction in the

magnitude of Lo over all frequencies.

The design was tested by simulating the system and determining

the regions of Po/Peq as well as the magnitude of the error. As
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with the second design, the duration of the time-varying gain

which is illustrated in Figure 4.30 was set at seven seconds.

Almost 300 variations were run with variations being both specifi-

cally selected and randomly selected. It is again felt that

reasonably accurate results were obtained.

The maximum error magnitude is shown in Figure 4.74 and the

regions of P /Peq are shown in Figure 4.75 through 4.80. As was

observed in the first design, the maximum errors occurred for time-

variations starting at ten and quickly decreasing to one. The

only significant increase in error due to the time-variations

occurred at the frequencies zero and 0.628. The time variations

causing the maximum error magnitude at w equal to zero and 0.628

are shown in Figures 4.81 and 4.82, respectively, along with the

corresponding step response and error function. Note in Figure

4.74 that the magnitude of the error is slightly larger than the

specifications in the region of 0.628. Otherwise, the system

just satisfies the specifications. Figure 4.75 also shows that

the specifications are not exactly met at 0.628 since the region

of w does not fully lie within the acceptable region of P/P eq

Since this system is very close to meeting the specifications

exactly, it is very likely that this design would be considered

acceptable. A series of time-variations with the corresponding

step responses and errors are shown in Figures 4.83 through 4.88.
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Figure 4.75
Region of Po/Peq for w = 0.628, Third Design
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Figure 4.76
Region of Po/Peq for X = 1.25, Third Design
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Figure 4.77
Region of Po/Peq for w = 1.88, Third Design
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Region of Po/Peq for w - 4.39, Third Design
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Note that the maximum overshoot is approximately 25% and the

maximum settling time is six seconds. The third design is

basically satisfactory; however, the system design must be

completed by adding the high frequency poles in L
o
. A fourth

design will now be made to include the high frequency poles.

4.8 Addition of High Frequency Poles

With only minor modification to Lo in the region of one radian

the third design would be satisfactory from the point of view of

system response and noise transmission in the low frequency region;

however, it is far from optimal when noise transmission in the

high frequency region is considered. The high frequency poles

necessary to reduce the noise transmission at high frequencies

will now be added.

An analysis of the noise transmission problem can be carried

out in basically the same manner as presented by Horowitz4 5 for

linear time-invariant systems. Due to the linearity of the system,

the system input can be assumed to be zero without affecting the

results. Referring to Figure 4.1, with the system input zero the

plant input Z is given by

Z(jw) = -H(jw) [ N(jw) + C(jw)]

which can be written

Z(jwj) + H(j) )]= -H(jW) N(jw).
z (jw)J
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Rearranging the expression, one can obtain

Lo (jw)

Z (jw)= PegojW) N(jw) (4-10)
PO(jD) + LO (jW)

Peq (J w)

where

Peq(wi) = Z(jw)

and

Lo(jw) = Po(jw)H(jw)

In the low frequency region the characteristics of Lo are dictated

by the system response. That is, at low frequencies Lo must lie

within acceptable regions in the complex plane up to some frequency

beyond which |Lol may be decreased as quickly as possible. In the

high frequency region the characteristics of L
o

are dictated by

Equation (4-10) which describes the noise transmission from the

noise source to the plant input. To show that it is desirable to

decrease ILol, suppose ILol were made large in the low frequency

region. The noise transmitted to the plant input would approxi-

mately be given by

Z(jw) ( -) 
Peq(iw) N(j)

At high frequencies the transmission of the time-varying plant is

greatly reduced so that IPeq(jw)l becomes small which results in

large values of noise transmission to the plant input. Thus, ILO|
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should be made as small as possible within the high frequency

region.

The reduction of ILO| in the high frequency region is

accomplished by including high frequency poles in the design of

Lo. A large number of poles cannot be added too low in the

frequency range for otherwise instability will result. The

procedure is then to add poles at increasing frequencies as quickly

as possible while maintaining both a stable system and the proper

system response. The problem is now to determine at what frequency

one may stop adding poles.

Again consider Equation (4-10). At high frequencies ILo0 is

smaller than IPo/Peql so that the noise component of the plant

input Z can be approximated by the expression

L, (jw)
Peq (jw)

Z(jw) ( N(jw)

Peq (jw)

or

Z(jw) Lo(jw) N(jw) = H(jm) N(jw) (4-11)

Po (j)

From this expression, which is intuitively evident, it is seen

that poles should be added to Lo until the desired amplification

factor between the noise source and plant input is achieved. The

desired amplification will depend upon the system and the noise

source. In some cases it may be satisfactory to stop adding
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poles while IH(jwo) is larger than unity, while in other cases it

may be desired to add poles until IH(jw) is much less than unity.

In this example it will be assumed that poles will be added until

IH(jw)| becomes less than unity - that is, until ILo(jw) becomes

smaller than IPo(jw) as the frequency is increased.

The approach in making the fourth design is to assume the

acceptable regions of -Lo corresponding to the third design are

also acceptable when high frequency poles are added. Note that

this does not mean that high frequency poles will merely be added

to the third design, because the addition of such poles will

cause an unacceptable decrease in ILo0 in the region of five to

ten radians unless they are placed at extremely high frequencies.

The high frequency poles must be incorporated as an integral part

of a new design based upon the assumed acceptable region of -Lo.

The polar plot of L
o

for the fourth design is shown in Figure

4.89 together with the acceptable regions and the stability region

corresponding to the circle criterion. The expression for LO(s)

is given by

LO(S) = 56.16

s+5

s(s + 10)(s + 18) [27+ 1] [ 0+ 1 [o+ 1] [70+ 1 (4-12)

The expressions for H(s) and G(s) were not found as a ratio of

polynominals as was done in the previous designs. Instead, the

system was simulated by simulating the various components of H and

G. The expression for H(s) is
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H(s) + 30.88 s2 + 7s + 10 1 1 1 1
s2 + 28s + 180 s s s s2I +I + T +l

and the expression for G(s) is

G(s) I= +L (S) 2.2s(s + 2)
Las)]s2 + 2.8s + 4

where Lo(s) is given above.

In adding the high frequency poles the critical region was

found to be between five and ten radians per second. As poles are

added at 20 or 30 radians, lag is introduced between five and ten

radians which causes -Lo to enter the circular stability region.

Although entering the stability region does not imply an unstable

system, system stability is not assured. The magnitude portion of

the Bode plot of ILO! for the fourth design is shown in Figure 4.90

with the plot of ILOI corresponding to the third design and the

plot of IPOI. Note that the third design and the fourth design

are identical below four radians per second. From four to 25

radians the magnitude of Lo for the fourth design is larger than

the magnitude of Lo for the third design. This increase allows a

more rapid decrease of ILol in the region greater than 25 radians.

The point where L0 1o for the fourth design crosses IPOl is at 94

radians so that poles are not added above 94 radians.

The fourth design was simulated and the maximum value of IEl

was determined which is shown in Figure 4.91. It is seen that tEI

significantly exceeds the specifications in the region of 0.25 to

1.6 radians. The step response corresponding to a function for
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which the specification is exceeded is shown in Figure 4.92.

Note the "dip" in the error as a function of time in the region of

0.6 seconds. Contrary to what might be expected the "dip" did

not result in a violation of the specification. The main fre--

quency component in the "dip" is around 12 radians and the

specifications were not violated in this high frequency region,

although an increase in ILol was observed in this region over that

seen in the third design. The violation of specifications in the

region of 0.25 to 1.6 radians is due to the addition of the high

frequency poles and is not an unexpected occurrance in a time-

varying system.

There are now two possible modifications of ILol which will

reduce the value of IEI. Either the magnitude of IL0 | may be
increased in the appropriate low frequency range or the high

frequency poles may be moved to higher frequencies which results

in raising ILol in the high frequency range. The design procedures

give a formal and systematic approach to increasing ILO| in the

frequency range where the specifications are violated; however,

placement of the high frequency poles must be done on a trial and

error basis.

The amplification of the noise from the noise source N to

the plant input is a more severe problem in the higher frequency

ranges than in the lower frequency ranges. One reason is that the

noise usually has larger components in the higher frequencies

than in the lower frequencies. But more important, it is the

higher frequencies where IPo/Peql is small and IHI is large which
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leads to large amplification of the high frequency noise com-

ponents as is seen from Equation (4-11). Thus, increasing ILoI

in the lower frequency range is preferred to relocating the high

frequency poles to still higher frequencies and thus increasing

ILo0 in the high frequency range.

The fourth design was modified in order to observe the effect

of both increasing ILol at low frequencies and relocating the

high frequency poles. The effect of relocating the high frequency

poles will first be discussed. Thelast three poles of IL0I,

Equation (4-12), were moved to 100 radians. This new system will

be referred to as the first modification of the fourth design or

simply Mod One. The expression for LO(S) corresponding to Mod

One is

Lo(s) = 56.16 s + 5
s(s + 10) (s + 18) [ +y + ]3

The expressions for H(s) and G(s) is evident from the corresponding

expressions of the fourth design and will not be given. The

difference between ILo for the fourth design and for Mod One is

most easily observed from Bode plots of the magnitude portion of

Lo for the two systems which are shown in Figure 4.93. Although

the difference in the two designs may not appear to be signifi-

cantly different from inspection of the Bode plot, the difference

is actually quite large due to the fact that noise power is

calculated from a linear integration over frequency. The maximum

value of IEl for Mod One is shown in Figure 4.94. The specifi-

cations are violated in the region of .5 to 1.5 radians, but the
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value of IEI is shown in Figure 4.95. Note that the "dip"

which was observed in the error of the fourth design (see Figure

4.92) is not present in Mod One. This design is unacceptable not

only because it violates the specifications but also because it

does not represent the fastest decrease in ILol that is possible

in the high frequency region.

A second modification was made to the fourth design to observe

the effect of increasing ILOI in the low frequency region. The

modification consisted of increasing the magnitude of ILOI in

the low frequency range with the high frequency poles unchanged.

This new system will be referred to as the second modification of

the fourth design or simply Mod Two. As in the third design, a

combination of design procedures one and two was used to determine

the acceptable regions of -Lo. The shape of the acceptable region

of -Lo was assumed to be as shown in Figure 4.89 and the design

equation, Equation (4-9), was used to determine the proper size

of the acceptable regions. The acceptable regions of -Lo for

the second modification are shown in Figure 4.-96 together with a

polar plot of -Lo for Mod Two. The magnitude portion of the Bode

plots of Lo for Mod Two together with the fourth design are shown

in Figure 4.97. Note that in Mod Two the values of ILOI do not

come as close to lying on the boundaries of the acceptable regions

as does I Lo for the fourth design shown in Figure 4.89. This is

because it proved to be difficult to have the large magnitude of

ILo0 required at 0.628 radians and at the same time decrease ILoI

to the minimum magnitude at 1.25 and 1.88 without violating the
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-Lo

_w = 0.628

_Xw = 1.25

Stability Boundary

Re

Figure 4.96
Boundaries of Acceptable Regions of -L

o

With Polar Plot of -Lo for Fourth Design, Mod 2
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specifications at 9.42 or even maintaining system stability. Note

that if the point 0.1818 on the real axis is enclosed by -Lo, the

system is unstable when the gain is constant at ten from a time-

invariant analysis. The plot of -Lo for Mod Two slightly enters

the stability circle so that the system stability cannot be

assured. The system proved, however, to be stable for all time-

variations tested.

A slight improvement can be made in fitting -Lo to the

acceptable regions of -Lo by moving the pole which is located at

ten radians to eight radians, moving the zero which is located at

6.4 radians to four radians, placing an additional zero at 2.3

radians and placing an additional pole at 1.7 radians. However,

this small improvement was not felt to be worth the additional

complexity in the system and will not be discussed in detail.

The maximum value of the error magnitude for Mod Two is shown

in Figure 4.98. Figure 4.99 shows a step response for one

function which corresponds to an extreme value of IEl. Note

that the "dip" in the error at approximately .5 seconds is larger

than was observed in the fourth design and is in fact large

enough to result in a small violation of the specification in the

region of six to ten radians where IEI reaches a value of 0.6.

The specifications are also not met in the region of 0.5 to 1.5

radians. This design would not be considered acceptable for not

only does it violate the specifications but also stability is not

assured,

A fifth design will now be made. It is expected that ILOI

for the fifth design should lie somewhere between Mod One and
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Mod Two, since in Mod One ILoI was too large in the high fre-

quency regions and not quite large enough in the low frequency

region, while in Mod Two ILO| was not large enough in the high

frequency region and appeared to be a little too large in the low

frequency region, The magnitude of ILO| for the fifth design at

low frequencies will be chosen to lie approximately half way

between the magnitude corresponding to Mod One and Mod Two. The

high frequency poles will then be placed so that a polar plot of

-Lo lies just outside the stability circle in order to assure

system stability. Note that this approach departs from the design

procedure but instead draws upon the insight which has been

gained in the previous designs.

The expression for Lo(S) for the fifth design is given by

LO (s) = 75 s + 6
s(s + 12.5) (s + 20) L + ] [ ]

[30 ] [4 ] [70 ] [85 ]

The polar plot of -L
o

is shown in Figure 4.100. For comparison the

acceptable regions used in the fourth design are also shown in

Figure 4.100, The relatively large magnitude of L
o

in the region

of nine radians is necessary in order to be able to reduce ILol

more rapidly in the higher frequency regions. This can be more

clearly seen from a Bode plot of ILO| which is shown in Figure

4.101. Also shown in Figure 4.101 are plots of ILo 'corresponding

to Mod One and Mod Two. Note that the magnitude of ILO| for the

fifth design lies approximately half way between the magnitudes of

ILol of Mod One and Mod Two at both high frequencies and low
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frequencies. The plot of the maximum error magnitudes for the

fifth design is shown in Figure 4.102. It is seen from Figure

4.102 that the specifications are satisfied. The choice of Lo

was fortunate because the value of IEI just meets the specifi-

cations in the regions of one and 5.5 radians which are the

critical frequency regions. In the region between two to four

radians lE| is much smaller than is required by the specification

which is due to the difficulty in making ILOl as large as required

in the region of one and six radians, while at the same time

small enough to just meet the specifications in the region

between two and five radians.

The fifth design is very close to the best design possible.

That is, the design satisfies the specification, but any signifi-

cant decrease in the magnitude of ILOL in any frequency range will

either result in a violation of the specifications or an increase

of the high frequency noise transmission. As has been mentioned,

the critical frequency ranges are around one and 5.5 radians. If

the high frequency poles are moved to lower frequencies in order

to reduce the noise transmission, the specifications will be

violated at both one and 5.5 radians. Decreasing |LO in the low

frequency range will result in a specification violation in the

region of one radian unless the high frequency poles are moved

farther out in the frequency range, thus increasing the noise

transmission. The fifth design is thus selected as the final

design.

The expression for H(s) is given by
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H(s) = 41.25 (s + 2) (s + 6)
(s + 12.5) (s + 20) s ] [s 1] 

30 48 70 ] 801 + ] Is S +1]

and the expression for G(s) is found from the relation

G(s)= [1 + Lo(S) To (s)

Po(s)

where

To(s) s(s + 2)
2.2

Po(s) s2 + 2.8s + 4

A sampling of step responses for the fifth design is shown in

Figure 4.103 through Figure 4.108. The maximum overshoot was

found to be 24% and the maximum rise time is six seconds. Observe

in Figure 4.103 that the "dip" in the error around 0.5 seconds is

still present but its magnitude has been reduced to the point

that the specifications are not violated. Note also thehigh

frequency variations present in the error shown in Figure 4.104

and Figure 4.105. These variations are not present in the third

design, so are thus a result of the decrease in ILOI in the high

frequency region.

The regions of P /Peq for the fifth design are shown in

Figures 4.109 through Figure 4.114. The regions closely resemble

those found for the third design which are shown in Figures 4.75

through Figure 4.80. However, the regions for the fifth design

are somewhat larger than those for the third design, especially
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in the critical area around the origin. The addition of the high

frequency poles in Lo has thus increased the size of the regions

of Po/Peq but the basic shape is unchanged.

4.9 Summary

A system having a time-varying gain which can range between

values of one and ten has been designed to meet a set of frequency

domain specifications. The design is close to optimal in the

sense that noise transmission to the plant input is minimized.

In the process of carrying out the design a good deal of insight

about the design procedure and the system was obtained.

The first comment concerns the specifications. The frequency

domain specifications which were chosen appear to have been

reasonable since the resulting system has a well-behaved step

response that would undoubtedly be considered satisfactory.

However, the system error as a function of time does not fall

within the specification envelope shown in Figure 4.7 which was

used to arrive at the frequency domain specifications. This is,

of course, due to the fact which was discussed earlier that error

functions can satisfy the frequency domain specification and still

fall outside the time domain error envelope. The time domain

envelope is exceeded only because of a fast system rise time.

Since a fast rise time is generally not considered an undesirable

system property, it appears that the time domain envelope was not

properly selected in the first place. It appears that the time

domain envelope should have allowed the system error to deviate

much more near the origin than was actually allowted. If it were
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desired to have the slower rise time, it would be necessary to

modify the frequency domain specifications. More study of the

relationship between the time domain specifications and the

frequency domain specifications would be necessary, however,

to determine the specific changes required.

The approach of using the time-invariant design as a starting

point appears quite satisfactory. In the example the time-

invariant design indicated the shape of the regions of -Lo which

changed very little during the design. The assumption that small

changes in L
o

cause only small changes in the regions of Po/Peq

proved to be valid for the example. In fact, changes in L
o

that

were not so small caused only relatively small changes in the

region of Po/Peq as was found in the fourth and fifth design when

the high frequency poles were added. Although the assumption will

have to be verified for other types of systems in order to obtain

any generality, its verification in this example is very promising

for the use of the regions of Po/Peq.

As was mentioned earlier, an additional advantage to using the

time-invariant design as a starting point in the procedure is

that it allows one to readily observe the additional magnitude of

L
o
needed to compensate for the time-variations. Figure 4.115

shows the Bode plot of ILoI for the final design together with the

plot of ILOI for a time-invariant design which includes the high

frequency poles. Also shown in Figure 4.115 is the plot of IPol.

The magnitude of ILo0 for the time invariant design is substantially

less in both the high frequency and low frequency regions than is
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ILol for the time-varying design. However, in the region between

two and six radians the difference in IL
o
l between the two designs

is not large and in fact ILol for the time-varying design could

probably be reduced somewhat. Thus the time-variations appear to

have little effect on the system response in the range of two to

six radians.

The example also pointed up a serious flaw in design procedure

one. The flaw, which was found in the second design, is the fact

that the acceptable regions of -L
o
are assumed to be circles

centered at point one. Such an assumption would undoubtedly lead

to an overdesigned system with little indication as to just what

to do to eliminate the overdesign. This is especially true in

the high frequency region where an overdesign is the most

undesirable. A problem is also present with procedure two in

that it is difficult to determine precisely the size of the

regions of Po/Peq which means that the precise size of the regions

of acceptable -Lo is also difficult to determine. It was found

that a combination of the strong points of the two procedures

resulted in an improvement in the design procedures. The regions

of Po/Peq of procedure two was used to determine the shape of the

acceptable regions of -Lo while IEl of procedure one was used to

determine how much the regions should be increased or decreased

for the next design. This combination appears to result in a

more powerful procedure than either design procedure one or two

alone.

It was also found in the example that the addition of the

high frequency poles in L
o
had a large effect on the low frequency
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error. Thus, it would probably be desirable to include the high

frequency poles in L
o
from the beginning of the design rather than

designing Lo at low frequencies before adding the high frequency

poles as was done in the example. There is, however, an advantage

in designing at low frequencies first and then adding the high

frequency poles. The advantage is that it is possible to examine

the effect of changing only portions of Lo. If the poles are

added early in the design, care must be taken in modifying Lo

since a change in the high frequency part of Lo affects the low

frequency error and vice versa. However, in the example, the low

frequency portion of Lo did not affect the high frequency error

as much as the high frequency portion affected the low frequency

error.

It is also of interest to note the type of time-varying gain

system for which a design is possible. If the time-invariant

portion of the plant is minimum phase, that is, all poles and

zeroes are in the left half plane, then it is possible to increase

the magnitude of Lo indefinitely without violating the stability

criterion (see Figure 4.100) so that the specifications will

eventually be met. On the other hand, if the time-invariant

portion of the plant is nonminimum phase, then it is not possible

to increase the magnitude of Lo indefinitely without violating the

stability criterion. Thus, for such systems it may not be possible

to increase the magnitude of Lo sufficiently to satisfy the

specifications. Therefore, if the time-invariant portion of the

plant is minimum phase, a design is always possible; otherwise,
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the possibility of a design depends upon the particular system

and the specifications.

Even though a strict application of the design procedure

itself may not lead directly to an optimal design, the procedure

does provide a systematic approach to arriving at an acceptable

design provided stability can be maintained. In the example the

insight gained in applying the design procedures allowed the

design to be carried to a point very close to the optimal. It

is anticipated that this will generally be the case in applying

these design procedures.

The example has demonstrated that suitable frequency domain

specifications can be obtained and the design procedures can be

successfully applied to systems with a time-varying gain.



CHAPTER V

CONCLUSIONS

A study of the time-varying system design problem which was

outlined in Section 1.1 has been undertaken. After a review of

the previous research in the field of time-varying systems it was

decided to employ time-invariant compensation and to design for a

desired transfer function for which procedures are well developed

rather than attempt to design for an impulse response which would

require a study in itself. An effort was first made to obtain an

analytical solution of the system equations from which a design

procedure could be developed. Unfortunately, the attempt was

unsuccessful so that efforts were turned to the utilization of

numerical solutions of the system equations which could be

obtained from computer simulations.

It was possible to develop two design procedures which are

based on the numerical solution of the system equation. The basic

difference in the two procedures is that procedure one assumes the

acceptable regions of the nominal loop gain Lo to be circular,

while in procedure two the shape of the acceptable region is

determined in the process of the design. Examples were presented

which illustrated that it was possible to carry out the steps of

the procedures using computer simulations.

The procedures as presented do not constitute a complete

solution of the time-varying system design problem. One
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difficulty which must be resolved is the determination of

satisfactory frequency domain specifications. Although it is

possible to arrive at specifications which intuitively appear

reasonable, the exact relationship between time-domain and

frequency domain specifications are unknown. A second difficulty

is the determination of a general stability criterion for time-

varying systems. Since necessary conditions for stability-are

known for systems having a time-varying gain, it is usually

possible to design such systems so that stability is guaranteed.

(It may not be possible to maintain stability if the time-

invariant portion of the plant is non-minimum phase; otherwise,

there will be no difficulty.) Nonetheless, in the design of a

general system the procedures themselves do not assure stability;

however, any future stability criterion which is specified in the

frequency domain can readily be incorporated into the procedures.

A design example of a system having a time-varying gain was

carried out in depth. Practical frequency domain specifications

were developed and a design was obtained which is close to the

optimal design. At each step the system step responses were

examined and were compared to the desired step response. It was

seen that the step responses behaved as one might expect and that

the step responses of the final design were entirely satisfactory,

thus showing that the frequency domain specifications were also

satisfactory. This example demonstrated that it was possible to

arrive at satisfactory frequency domain specifications and by



280

employing the insight gained in carrying out the procedures, a

design could be obtained which was close to the optimal design. It

was seen that in the example the assumption of circular acceptable

regions of Lo which is made in design procedure one was highly

inaccurate. In fact, it was found that a combination of procedures

one and two gave better results than either of the two procedures

individually. The combined method consists of determining the

shape of the acceptable regions of Lo from procedure two, while the

size of the acceptable regions are determined from procedure one.

On the whole the example indicated that the design procedures

could be satisfactorily carried out and would yield acceptable

results.

In carrying out the design examples presented in this paper,

simulations were successfully carried out on analog, digital, and

hybrid computers. The advantage of the analog computer is its

ability to solve the system equations quickly; however, it requires

constant attention by the operator in order to perform the many

runs required in searching for the maximum E and the region of

Po/Peq. Operator action also increases the total run time con-

siderably. The advantage of the digital computer is that it can

perform the required runs automatically; however, it requires a

good deal of time to complete the calculations. The hybrid

computer is able to utilize the good features of both the analog

and digital computers. The analog portion of the hybrid computer

is utilized to obtain a quick solution to the system equations,
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while the digital portion is used to control the analog and read

out the results. The hybrid operations are much faster than

either the digital or analog alone and would be the preferred

method of performing the calculations if such a computer were

available.

An additional area of research is the determination of worst

case time variations. That is, the determination of those

variations which result in the maximum value of E and which fall

on the boundary of the region of Po/Peq. At present the method

of determining the maximum value of E and the region of Po/Peq

is to run a large number of possible variations as was done in

the examples. This approach is successful when there is no more

than one or two time-varying parameters. However, if the system

has several time-varying parameters, the number of possible

combinations of these variations soon become prohibitively large

to try to determine the worst case variations simply by testing

representative variations of all possible combinations. If the

worst case variations were known, there would be no need for a

search and the time required to carry out the design would be

greatly reduced.

It can not be stated the design procedures are ready for

general application to the design of time-varying systems because

of the problem of system stability and the problem of determining

the worst case variations for systems having a number of time-

varying parameters. However, the procedures can be successfully

employed on systems having a time-varying gain. In addition, the
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concepts apply to any time-varying system; so, depending upon the

case, it may be possible to apply the procedures to more general

systems. Thus, even though the procedures are limited, they are

a useful tool in the practical design of time-varying systems.
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APPENDIX A

In this appendix it will be shown that if the system remains

stable, the magnitude of the error can be reduced to as small a

value as desired by increasing the magnitude of the feedback

compensation H(j.W).

Employing the abbreviated notation of Section 3.2, the design

equation, Equation (3-9), is given by

Po-lE + HE = -AP-1(Co + E) (A-1)

The expressions for E and AP-l are

E C - C
o

Ap-1 = p-1 _ p-1.

Substituting these expressions into Equation (A-1) it is possible

to obtain

HC + P-1C = HCo + Po-lCo (A-2)

It is important to understand the meaning of Equation (A-2). A

block diagram of the system is shown in Figure A.1.

R Y Z CRC

Figure A.1
Block Diagran of System Under Study
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The system equation is

GR = p-1C + HC (A-3)

Comparing the system equation with Equation (A-2) it is seen that

one can write

HC + P-1C = GR = HCo + Po-lCo

That is, both the right hand side and the left hand side of

Equation (A-2) are equal to the output of the prefilter. This,

of course, is due to the fact that in Equation (A-2) the plant

input is considered a constant and the difference in C and CO

is due only to the difference in the plant P and the nominal plant

Po. Thus, the output of the prefilter is always the same

irregardless of the plant. The system output in turn is such

that the relation P-1C + HC is always equal to the prefilter

output.

Another point that should be recalled is that in Equation

(A-3) the plant output is not unique for a given plant input.

This is due to the fact that the system output is made up of the

system input and the complementary solution which is uniquely

determined by the system's initial conditions.5 2 In determining

the step response of a stable system the initial conditions are

set to zero so that the complementary solution is also zero and

the output consists only of the forced solution which is uniquely

determined by the system input. If the system is unstable,

however, the complementary solution will grow without bound once
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an initial condition is displaced slightly from zero by noise.

Thus, if the system is unstable, the complementary solution will

not be zero so that the system output will not be uniquely

determined by the system input. Thus, in Equation (A-2), if the

system is stable, C is uniquely determined by Co and vice versa

since the initial conditions are set equal to zero in the

determination of the system step response. If the system is

unstable, however, this uniqueness does not hold.

In describing the system it is convenient to borrow notation

from classical linear time-invariant system analysis. Let the

system type number of a time-varying system be the same as the

type number if the plant parameters were time-invariant.4 1 That

is, if the plant parameters were time-invariant, then the plant

of a type 0 system has no poles at the origin, while the plant

of a type 1 system has a pole of order one at the origin, the

plant of a type 2 system has a pole of order two at the origin,

and so forth.

Consider next the relationship between the nominal plant and

the desired step response. The desired step response C
o
must be

chosen such that it can be delivered by the nominal plant Po as a

result of a reasonable plant input. That is, it must not be

necessary that the plant input contain impulse functions or

derivatives of impulse functions in order for the nominal plant

to deliver the desired step response when the plant is the nominal

plant. This will only be true if the input to the plant is
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physically possible. Thus, if the system is stable, the input to

the nominal plant Po must be bounded. In addition, if the system

is type 0, e(t) will settle to a constant and if the system is

type 1 or higher, e(t) will settle to zero. Therefore, for type

0 systems the Fourier transform of the plant input will only have

a pole at frequency zero and no other poles, (i.e., all the poles

of the Laplace transform of z(t) will be in the left half plane

except for one pole at the origin). For type 1 systems or higher

the Fourier transform of the plant input will have no poles (i.e.,

all poles of the Laplace transform of z(t) will lie in the left

half plane). The Fourier transform of the input to the nominal

plant is given by

Z = Po CO

which is independent of the feedback H; thus, the magnitude of

Po-iC is independent of H and is bounded for all X except in

type 0 systems where Po Co has a pole at w = 0.

The desired objective is to show that the magnitude of the

error goes to zero as the magnitude of H goes to infinity provided

the system remains stable. Since the system is assumed stable and

for step responses the system initial conditions are zero, Equation

(A-2) uniquely describes C in terms of C
o

and vice versa. Equa-

tion (A-2) can be written in the form

C - C O= OIc - CA1C

Returning to the full notation, one obtains
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E(j) = C(jW) - Co(jW) =

Co(jm)Po-1 (jg) - f P-l(jw,jy) C(jy) dy. (A-4)

H(jw) -O H(jw)

Note that the nominal plant is time-invariant and can thus be

represented by its transfer function which is denoted Po-l(jm).

From the previous discussion it is seen that the first term on the

right hand side of Equation (A-4) goes to zero as IHI goes to

infinity except for type 0 systems at w = 0. This is because

PoI-Co is independent of H and is bounded except for the one case.

It is not so obvious, however, that the integral term goes

to zero as IHI goes to infinity since the system output C is

dependent upon H. It will be shown by contradiction that the

integral term does in fact go to zero as the magnitude of H

increases without bound. Suppose that the magnitude of the

integral term does not go to zero as IHI goes to infinity. That is

lim 
JH|J f Pl(jjy) LQ) dy > K. (A-5)

-oo H(jw)

Observe that H(jw) is not a function of the variable of integra-

tion and thus just represents a complex number that grows in

magnitude with the limiting process. Interchanging the order of

the limiting process and the integration procedure and noting that

p-l(jw,jy) is independent of the limiting process since it is

independent of H, one can write
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f p-l(jw,jy) lim C(jy) dy > K.f0 )IHI-* H(jw)
(A-6)

In this form it is evident that the 'magnitude of C must increase

at least as fast as the magnitude of H, for otherwise, the

magnitude of C/H would tend to zero and the magnitude of the

integral would also tend to zero. Thus, C must have the property

lim

|Hj | ICI- AIHIb, b > 1, A > 0.

Observe, therefore, that

lim IC b Co
I

_ A I
H

I
I~-IC - C.1-~-,AIllI

Thus, from Equation (A-4), one now obtains

lil IC - CoI IHI f p-l(jwjy) lim C ) dlira [C- Col [HI = f p-l(jw,jy) Il_~ ¥j ) dy
IHI- -00 HI ---

or

- AHb dy.IHI ACIHIHI < Jlp lCjus0 IHI

Dividing by IHb+l , the expression becomes

co

A < f p-l(jw,jy)[ lim A dy.
-o JHJ-THI~H

Since the term A/IH [ goes to zero as the magnitude of H goes to

infinity, the integral is zero or

A<O
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which is a contradiction. The original supposition that the

integral term of Equation (A-4) does not go to zero is thus false,

and it can only be concluded that the integral term does indeed

go to zero as the magnitude of H goes to infinity.

Since both terms on the right hand side of Equation (A-4)

go to zero as the magnitude of H increases, the magnitude of the

error must also go to zero.

In summary, it has been shown that as the magnitude of the

feedback compensation H is increased without bound, the magnitude

of the error tends to zero provided system stability can be

maintained.



APPENDIX B
DERIVATION OF I (jy)

In this appendix the expression for I (jy) of design example

two is derived. The expression for I (jy) is given by
0

Io(jy)= j P- (jy,jW)Co (j)dw- J P l(jy,jw)dw
_--C - co

which is equivalent to the Fourier transform of the plant input

when the plant output is equal to c (t) minus the Fourier transform
0

of the nominal plant input when the output is equal to c (t).

Referring to design example two it is seen that if the plant output

is c (t) then the plant input is given by

O Oy(t) = g(t)0o(t) + f(t)co(t)

and if the input to the nominal plant is c (t) its output is

y(t) = 0.505' (t) + 0.1756 (t)

Thus the expression for I (jy) can be written
0

I (jv)= J' {(g(t)-0.505)o(t) + (f(t)-0.175) (t)} e
- j Yt dt

0 x
-ca (B-l)

Substituting the expressions for g(t), f(t) and c (t) from design

example two into this equation one obtains

co

I (j)= S(G 1 -0.505 + G (1-e b(t- 2 ))U(t-T2)]
_ o2

[4e1.4 cos(l.44t) - 3.96e sin(l.414t)] u(t) +

[F1 -0.175 + F2(1-e a(t1l) )u(t-T1 )]

[2.83e- 1 . 4.i(l. 4t)u(t)]} e- jYt dt".

Note that the evaluation of this integral depends upon the values

of T1 and T2. Let

G
3
= G

1
- 0.505

3 1
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and

F3 = F
1

- 0.175

In order to simplify the expression the following functions are

defined:
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co

A1(jY)= & G3 [4e1.4t cos(1.414t) - 3.96e- 1.4t st( 1 414t) I eJYt dt

A2 (jv) G2 ( - e -b(t- 2)) [4e 1.4 t

3.96e1.4t sin(l.414t) ] e - j y dt

A
3
(jy)= f G (1 - b(t- 2 )) [4e14t

T2
3.96

cos(1.414t) -

e-l 4tsin(1.414t) ]

B (jy)= F3 2.83e -l4tsin(l.414t) e- jy t dt
I3

B2 (j)= F2 - e-a(tl)) 283e-
1 4 tsin(1.414t) e-yt dt

co

B
3

(jy)= J' F 2 (1 - ea(tl)) 2.83e 1 4 tsin(1.414t) e-t dt

Evaluating these integrals one obtains:1

Evaluating these integrals one obtains:

Al(jy)= G3

A2 (jy)= G2 {

4jy

(jy + 1.4)2 + 2

4jy

(jy + 1.4)2 + 2

A3(jy)= G2 e (y1 )T2
3 2

4 e 2 (jy + b)

(jy + 1.4 + b)2 + 2

4jycos(1.414T2 )-3.96(jy+2.8)sin(1.414T2 )

(jy + 1.4)2 + 2

4(jy+b)cos(1.414T2 )-3.96 (jy+2.8+b) sin (1.414 2 )

(jy + 1.4 + b)
2
+ 2

B1 (j)= F 4
(jY + 1.4) + 2

4
B2 (jV)= F2 ((

y + 1.4) + 2

4 eaTl

(jy + 1.4 + a) + 2 J

e-jyt dt
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B3(j¥y)= F2 e- (J+l 4) l { 4cos(1.414T1)+2.8(jy+l.4)sin(l.4T1)
(jy + 1.4) + 2

4cos(1.414Tl)+2.8(jy+1.4+a)sin(1.414T 1 ) 

(jy + 1.4 +a)2 + 2

Io(jy) is thus given by the following expressions.

For T < O , T2 < 0
1- 2-

I (jy) = AL(jy) + A2(jy) + Bl(jY) + B2 (jY)

For T1 < 0 , T
2

> 0

I (jy) = Al(jy) + A2(jY) + Bl(jy) + B3(jy)

For 1 > 0 , 2 < 0

I (jy) = A (jy) + A (jy) + B (jy) + B (j2 )

For T > , T > 0
1- 2-

I (jy) = A1(jy) A (jy) + B (j¥) + B3(jY)



APPENDIX C

DERIVATION OF P (jw)/P q(j w)

In this appendix the expression for P (jw)/p eq(jo) of design

example three is determined. Referring to Equation (3-55)

P (jc)/Peq (jw) is seen to be given by

p (jW) Po(jr) o -1P (jW) P (jw) 

Peq(jw) C (j) Sf P (jw,jy)Co(jy)dy

The transfer function of the nominal plant is given by

P (joW) = 2
0°~j~= 0.505(ju)2 + 0.175jw

and C (jW) is given by

4
C (j0) =

j [(j )2 + 2.8jw + 4

Let

co

Y(jw) = f p -(jw, j)C (jy)dy 
-co

This integral is the Fourier transform of the plant input when the

plant output is c (t). Thus the integral can be expressed as
0

co

Y(jw) = g(t)o(t) + f(t)t)(t)} e-jW dt (C-1)

Comparing Equation C-1 with Equation B.-l of Appendix B it is seen

that the two are the same with the exception of two constant terms

in Equation B-l. Thus the development given in Appendix B applies

directly to obtaining Y(jwE) with the exception that G3 is set equal

to G
1

and F
3

is set equal to FL. That is

Y (jW) = I (jw)
0 0

where

G3 = G1

and

F3 = F1
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The expressions for P (jw)/Peq(jw) are

For 1 < O0 , T2 < 0

P (ji )

P q(jW)
eq

P (jw)

C (ji )
0

[A(jw) + A2 (jw) + B1 (jw) + B2 (jw) ]

For T1 < 0 , T2 > 01- 2-

Peq(j) - C (jW) [Al(jW) + A2 (jw) + Bl(j) + B3(jw)]

For r1 > O , T
2

< 0

P (jw) P (ji)

Peq (j) C (jW) [Al(j ) + A3(jw) + Bl(jw) + B2 (jO)]

For T1 > O0 , > 0

P (jw)

Peq (J W)

Po(ijW)

Co (j w)
[A (j W) + A3 (jw) + Bl(jw) + B3 (j w)]

where the functions Al(jw), A2(jw), A3(jw), Bl(jw), B2 (jw), and
B3 (jw) are given in Appendix B with G1 equal

to F
3
.

to G3 and F1 equal



APPENDIX D

This appendix discusses the computer simulation of the design

example presented in Chapter 4.

The simulation was carried out on an IBM 1130 digital computer

using the Continuous System Modeling Program or CSMP for the 1130.

The computer had a core storage of 16K and a memory access time of

four microseconds. The CSMP program simulates an analog computer

with the input in the form of functional blocks such as an integra-

tor, summer, multiplier, etc. The system to be simulated must

thus be represented by a block diagram in much the same manner as

is done in setting up an analog computer simulation. The program

is limited to a maximum of 25 integrators and a total of 85

functional blocks. This size proved to be adequate for the systems

simulated in the example. The method of performing the inte-

gration in the program is by a second order Range-Kutta which is

carried out at one half the integration interval specified by the

user.

Modifications to the CSMP program were necessary in order to

save and store the plant input and output signals as well as to

calculate the necessary Fourier transforms. The algorithm given

in Reference (48) was used in the subroutine for the Fourier

transform computation. Modifications were also made in the program

for selecting a different time-varying function at each run. The

function parameters could either be selected at random from a

random function generator or, if desired, could be chosen by the
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operator and read in from cards. Provisions were made for

calculating and printing the error E(jw) and the ratio

Po(ji)/Peq(jw) at selected values of w. In addition, the actual

signals themselves could be printed out if desired. As an aid in

determining the regions of Po/Peq, a plotting scheme was devised

whereby the points of Po/Peq were stored for each calculation

and after all time-variations had been run, the points were

"plotted" by the printer for each value of w. This technique

eliminates the necessity of manually plotting each value.

The calculation of the Fourier transform of the various

signals requires special consideration. In the definition of the

Fourier transform, the limits of integration are from plus to

minus infinity. Obviously, the numerical integration cannot be

performed over such a range; however, if the function to be

integrated is zero outside a finite range, the integration need

only be performed over this finite range and the numerical

integration can be performed satisfactorily. Consider the error

function

e(t) = c(t) - co(t).

At t less than or equal to zero, c and c
o
are both zero so that e

is also zero. If there is an integrator in the plant, the final

value of c will equal the final value of co, so that the final

value of e is also zero. Practically, one finds that e is

essentially zero after some finite time T. Thus, the numerical

calculation of E(jw) is accomplished by integrating over the
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interval zero to T. Difficulty is encountered in the numerical

evaluation of the Fourier transform of the step response c(t).

Note that c is zero for t less than or equal to zero but goes to

some finite value C, as t goes to infinity. Thus, the numerical

evaluation of C(jw) cannot be made from c(t) directly. This

difficulty can be circumvented by defining a new function c(t) as

c(t) = CO u(t) - c(t)

where u(t) is the unit step function. After some time T, c(u)

is essentially equal to cm so that c(t) is zero for t greater than

T. Also, c(t) is zero for t less than zero so that the numerical

Fourier transform of c(t) can easily be calculated by integrating

over the interval zero to T. The Fourier transform of u(t) for

w greater than zero is known to be

u(t) = 1
jW

so that the Fourier transform of C can be obtained from the

relation

C(jw) = Co[u(t)] - I[c(t)]

Cc 
= - - C(jw)
jw

The function c(t) can easily be obtained in the simulation from

which C(jw) and C(jw) are then calculated. The calculation of

the Fourier transform of the plant input presents no particular

problem since in the example the plant input signal goes to zero

as time goes to infinity.
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The integration step size in the program must be selected

by the operator and is unchanged throughout the run. A number of

step sizes were examined in order to determine the proper values

which would yield as rapid a solution as possible and still

maintain accuracy. The size selected was 0.01 seconds. Tests

were run on time-invariant systems to check the accuracy of the

Fourier transform calculation and it was found that the computer

computations error was well within 5% up to 30 radians. As an

additional test, each time-varying design was run with the gain

held constant at values of 1, 1.818, and 10, and the results

compared against analytical calculations. This procedure not

only verified the accuracy of the calculation but also insured

against an error in the simulation.

Despite efforts to reduce computation time, the calculations

were fairly lengthy. It required from seven to ten minutes of

computer time to calculate ten seconds of simulated system time

and an additional two minutes were required to compute IEl and

Po/Peq for the frequencies of interest. A complete design

evaluation consisting of from 250 to 300 runs required from 35

to 40 hours of computer time.


